期刊文献+

认知雷达子空间信号迭代闭环检测方法

Cognitive Radar Subspace Signal Detection Method in Iterative Closed Loop
下载PDF
导出
摘要 闭环迭代过程是认知雷达信号处理的重要特征。在雷达与探测环境构成的闭环中,雷达逐渐理解环境,选择适合当前环境的信号处理方式。本文考虑杂波和噪声中,认知雷达的子空间信号检测问题。基于认知雷达闭环迭代架构,提出了一种认知雷达检测方法。在每次迭代开始时,利用获得的数据计算目标在子空间内坐标的最大似然估计,然后依据目标参数设计下一次迭代所需的发射波形。计算机仿真分析表明,利用闭环迭代检测算法,认知雷达能够更高效获得探测环境信息,其检测性能优于常规雷达。 The iterative procedure in closed loop is an important characteristic of the cognitive radar system. In the closed loop including the radar system and operation environment, the cognitive radar can understand the surroundings cycle by cycle to select the proper signal processing method. In this paper, we consider subspace signal detection problem for the radar target embedded in the clutter and thermal noise. The cognitive radar target detection method is proposed based on the iterative and closed loop framework for cognitive radar. The maximum likelihood estimate of the coordinates of the target in the subspace is obtained with the received data at beginning of each loop, and then the transmitted wavefonn for the next cycle is designed based on the estimated target signature. The computer simulation results indicate that the cognitive radar can obtain the information about the operation environment in more effective manner, due to the iterative closed loop detection method, and the detection performance outperforms that of the traditional radar.
作者 邹鲲 吴德伟 李伟 ZOU Kun WU De-wei LI Wei(School of Information and Navigation, Air Force Engineering University, Xi'an, Shaanxi 710077, China)
出处 《信号处理》 CSCD 北大核心 2017年第6期798-804,共7页 Journal of Signal Processing
基金 国家自然科学基金(61571456) 陕西省自然科学基金(2016JM0644)
关键词 认知雷达 闭环迭代过程 目标检测 杂波 cognitive radar iterative closed loop procedure target detection clutter
  • 相关文献

参考文献1

二级参考文献19

  • 1S Haykin. Cognitive radar: A way of the future [J]. IEEE Signal Processing Magazine, 2006, 23(1): 30-40.
  • 2M R Bell. Information theory and radar waveform design [J]. IEEE Transactions on Information Theory, 1993, 39(5): 1578-1597.
  • 3S Kay. Waveform design for multistatic radar detection [J]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45(3): 1153-1166.
  • 4Y Yang, R S Blum. MIMO radar waveform design based on mutual information and minimum mean-square error estimation [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(1): 330-343.
  • 5J Tang, N Li, Y Wu, et al. On detection performance of MIMO radar: a relative entropy-based study [J]. IEEE Signal Processing Letters, 2009, 16(3): 184-187.
  • 6B Tang, J Tang, Y N Peng. MIMO radar waveform design in colored noise based on information theory [J]. IEEE Transactions on Signal Processing, 2010, 58(9): 4684-4697.
  • 7A De Maio, A Farina, G Foglia. Knowledge-aided bayesian radar detectors & their application to live data [J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 170-183.
  • 8E J Kelly. An adaptive detection algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems, 1986, 22(1): 115-127.
  • 9E Conte, A A De Maio, A. Farina, et al. Design and analysis of a knowledge-aided radar detector for doppler processing [J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1058-1079.
  • 10U Gllntiirkiin. Toward the development of radar scene analyzer for cognitive radar [J]. IEEE Journal of Oceanic Engineering, 2010, 35(2): 303-313.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部