期刊文献+

采用新型纹理特征的2DLDA人脸识别算法 被引量:4

2DLDA Face Recognition Algorithm Using Novel Texture Features
下载PDF
导出
摘要 针对现有基于纹理特征的人脸识别算法中纹理特征维数偏大且对噪声较敏感等不足,提出了用于描述人脸图像大尺度局部特征的中心四点二元模式(Center Quad Binary Pattern,C-QBP)和用于描述图像小尺度局部特征的简化四点二元模式(Simplified Quad Binary Pattern,S-QBP)两种互补的新型纹理特征。在此基础上,实现基于新型纹理特征的2DLDA人脸识别算法。首先对人脸图像进行多级分割,再对所产生的图像块提取C-QBP和S-QBP纹理特征,构建纹理特征矩阵。最后,采用2DLDA子空间学习算法实现基于新型纹理特征的人脸识别。实验结果表明,本文所提出的人脸识别算法的识别率明显高于其他基于纹理特征和子空间学习的人脸识别算法。当每一类训练样本数统一设置为5,特征维数为48×4时,在ORL人脸库上,本文所提出的人脸识别算法的识别率达98.68%;在YALE人脸库上,特征维数为48×36时,识别率达99.42%;在FERET人脸库上,特征维数为48×26时,识别率为91.73%。 Since the existing texture features-based face recognition methods are suffered from large texture feature dimensions and noises, two novel complementary texture features, named center quad binary pattern (C-QBP) and simplified quad binary pattern (S-QBP) , are proposed. Based on the proposed C-QBP and S-QBP, the two dimensional linear discriminant analysis (2DLDA) subspace learning algorithm is further employed to realize face recognition. More specifically, a multi-level block division method is firstly performed on the input image to produce multiple image blocks. Then, the C-QBP and S-QBP feature histograms are extracted from each image block for establishing the texture matrix of the input im- age. Finally, the 2DLDA subspace learning algorithm is applied to find an optimal texture subspace for face recognition. Experimental results have shown that the proposed face recognition method is superior to the state-of-the-art texture feature and subspace learning based face recognition methods. Specifically, when each training class holds 5 images, the face rec- ognition rate of the proposed approach is 98.68% on the ORL database with a 48 ×4 feature dimension, 99. 42% on the YALE database with a 48x36 feature dimension, and 91.73% on the FERET database with a 48x26 feature dimension.
作者 朱建清 葛主贝 曾焕强 陈婧 蔡灿辉 ZHU Jian-qing GE Zhu-bei ZENG Huan-qiang CHEN Jing CAI Can-hui(College of Engineering, Huaqiao University, Quanzhou, Fujian 362021, China School of Information Science and Engineering, Huaqiao University, Xiamen, Fujian 361021, China)
出处 《信号处理》 CSCD 北大核心 2017年第6期811-818,共8页 Journal of Signal Processing
基金 国家自然科学基金资助项目(61602191 61401167 61372107) 福建省自然科学基金(2016J01308) 华侨大学中青年教师科技创新资助计划(ZQN-PY418 ZQN-YX403) 华侨大学科研基金资助项目(16BS108) 华侨大学高层次人才科研启动费项目(14BS201 14BS204) 华侨大学高层次人才资助项目(600005-Z16X011)
关键词 人脸识别 新型纹理特征 二维线性鉴别分析(2DLDA) face recognition novel texture feature two dimensional linear discriminant analysis (2DLDA)
  • 相关文献

参考文献4

二级参考文献49

  • 1李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,14(2):320-326. 被引量:20
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1) : 71- 86.
  • 4ETENMAD K, CHELLAPPA R. Discriminant analysis for recognition of human face images[J]. Journal of the Optical Society of America, 1997, 14(8) : 1724-1733.
  • 5ZHANG J Y,FRANGI D, YANG A F, et al.. Two-dimensional PCA.. a new approach to appearance-based face representation and recognition[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2004, 26 (1): 131-137.
  • 6HEISELE B, HO P, WU J, et al.. Face recognition: component-based versus global approaches[J]. Computer Vision and Image Understanding, 2003, 91(1/2) : 6-21.
  • 7PENEV P S, ATICK J J. Local feature analysis: a general statistical theory for object representation[J]. Network: Comput. Neural Syst., 1996, 7(3): 477-500.
  • 8BRUCE V, HANCOCK P J B, BURTON A M. Human Face Perception and Identification[M]. Berlin: Springer-Verlag , 1998:51-72.
  • 9SINHA P, BALAS B, OSTROVSKY Y, et al.. Face recognition by humans: nineteen results all computer vision researchers should know about[J]. IEEE, 2006, 94(11) : 1948-1962.
  • 10ZHAO W, CHELLAPPA R, PHILLIPS P J, et al.. Face recognition : a literature survey[R]. CS-Tech Report- 4167, University of Maryland, 2000.

共引文献62

同被引文献28

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部