期刊文献+

基于变量节点LLR消息加权的改进最小和算法 被引量:2

Improved Min Sum Algorithm Based on Weighted Message LLR of Variable Nodes
下载PDF
导出
摘要 为了提高低密度奇偶校验(LDPC)码的单最小值最小和(single-minimum Min-Sum,sm MS)算法的误码性能,提出了一种基于变量节点LLR(Log Likelihood Ratio)消息加权的改进最小和(Improved Min Sum algorithm based on weighted message LLR of variable nodes,IMS-WVN)算法。首先,将迭代次数所确定的次小值的估值参数与最小值相加后取代次小值,以增强sm MS算法校验节点的可靠度。然后,将变量节点输出LLR消息与迭代前LLR消息进行加权处理,降低变量节点的振荡幅度,降低平均译码迭代次数。仿真结果表明,在信噪比为3.2 d B时,IMS-WVN算法的误码性能比VWMS算法提升0.53 d B,当误码率为10-5时,IMS-WVN算法平均译码迭代次数较MS算法减少58%。 In order to improve the bit-error-rate performance of the single-minimum Min-Sum algorithm for decoding Low- density parity check (LDPC) codes, the IMS-WVN (Improved Min Sum algorithm based on weighted message LLR of variable nodes) was proposed in this paper, firstly, determined the estimation parameter of the sub-minimum value accorded to the number of decoding iterations, and added the minimum value to replace the sub-minimum so as to enhance the reliability of the check-node. Secondly, the currently message of variable-to-cheek node and the message of old variable-to- cheek node were weighted to decrease the oscillation of the variable node and decrease the average number of decoding iteration. The simulation results show that the IMS-WVN algorithm had improved 0. 53 dB than VWMS algorithm and the 3. 2 dB order of error rate, when the error rate was 10.5 , The average number of iterations of the IMS-WVN algorithm is 58% less than that of the MS algorithm.
作者 陈紫强 李亚云 侯田田 王广耀 CHEN Zi-qiang LI Ya-yun HOU Tian-tian WANG Guang-yao(School of Information and Communication, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China)
出处 《信号处理》 CSCD 北大核心 2017年第6期894-899,共6页 Journal of Signal Processing
基金 广西自然基金项目(2013GXNSFFA019004 2014JJ70068) 广西教育厅重点项目(ZD2014052)
关键词 低密度奇偶校验码 单最小值最小和 估值参数 误码性能 low density parity check code single-minimum Min-Sum algorithm estimation parameter error rate performance
  • 相关文献

参考文献1

二级参考文献14

  • 1R. G. Gallager, Low-density parity-check codes[ J]. IRE Transactions on Information Theory, 1962,8( 1 ):21-28.
  • 2T. Zhang and K. K. Parhi, Joint code and decoder design for implementation-oriented (3, k )-regular LDPC codes, in IEEE Asilomar Conference, Nov. 2001, pp. 1232-1236.
  • 3Y. Li, M. Elassal, and M. Bayoumi, Power efficient architecture for (3,6)-regular low-density parity-check code decoder, in Proc. IEEE ISCAS 2004, pp. IV81-IV84, May 2004.
  • 4R. M. Tanner, D. Sridhara, et al, LDPC Block and Convolutional Codes Based on Circulant Matrices, IEEE Trans. Info. Theory, vol. 50, pp. 2966-2984, Dec. 2004.
  • 5M. P. C. Fossorier, Quasi-Cyclic low-Density Parity-Check Codes From Circulant Permutation Matrices, IEEE Trans. Info. Theory, vol. 50, pp. 1788-1793, Aug. 2004.
  • 6Zongwang Li, Lei Chen, Lingqi Zeng, et al, Efficient Encoding of Quasi-Cyclic Low-Density Parity-Check Codes, IEEE Trans. on communications, vol. 54, No. 1, pp. 71-81, Jan. 2006.
  • 7J Heo. Analysis of Scaling Soft Information on Low Density Parity Check Nodes [ J ]. Elect. Letter, 2003,39 (2) : 219-221.
  • 8T. Zhang and K. K. Parhi. A 54 MBPS (3, 6)-regular FPGA LDPC decoder, in Proc. IEEE Int. Symp. Information Theory, Oct. 16-18,2002, pp. 127-132.
  • 9S. Winograd, On computing the discrete Fourier transform, Math. Comput. 32( 141), 1975,175-199.
  • 10T.K. Truong, P.D. Chen, L.J. Wang, Y. Chang, I. S. Reed. Fast, prime factor, discrete Fourier transform algorithms over GF(2a) for 8 = m = 10, Information Sciences 176 (2006) 1-26.

共引文献5

同被引文献12

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部