摘要
为了提高低密度奇偶校验(LDPC)码的单最小值最小和(single-minimum Min-Sum,sm MS)算法的误码性能,提出了一种基于变量节点LLR(Log Likelihood Ratio)消息加权的改进最小和(Improved Min Sum algorithm based on weighted message LLR of variable nodes,IMS-WVN)算法。首先,将迭代次数所确定的次小值的估值参数与最小值相加后取代次小值,以增强sm MS算法校验节点的可靠度。然后,将变量节点输出LLR消息与迭代前LLR消息进行加权处理,降低变量节点的振荡幅度,降低平均译码迭代次数。仿真结果表明,在信噪比为3.2 d B时,IMS-WVN算法的误码性能比VWMS算法提升0.53 d B,当误码率为10-5时,IMS-WVN算法平均译码迭代次数较MS算法减少58%。
In order to improve the bit-error-rate performance of the single-minimum Min-Sum algorithm for decoding Low- density parity check (LDPC) codes, the IMS-WVN (Improved Min Sum algorithm based on weighted message LLR of variable nodes) was proposed in this paper, firstly, determined the estimation parameter of the sub-minimum value accorded to the number of decoding iterations, and added the minimum value to replace the sub-minimum so as to enhance the reliability of the check-node. Secondly, the currently message of variable-to-cheek node and the message of old variable-to- cheek node were weighted to decrease the oscillation of the variable node and decrease the average number of decoding iteration. The simulation results show that the IMS-WVN algorithm had improved 0. 53 dB than VWMS algorithm and the 3. 2 dB order of error rate, when the error rate was 10.5 , The average number of iterations of the IMS-WVN algorithm is 58% less than that of the MS algorithm.
作者
陈紫强
李亚云
侯田田
王广耀
CHEN Zi-qiang LI Ya-yun HOU Tian-tian WANG Guang-yao(School of Information and Communication, Guilin University of Electronic Technology, Guilin, Guangxi 541004, China)
出处
《信号处理》
CSCD
北大核心
2017年第6期894-899,共6页
Journal of Signal Processing
基金
广西自然基金项目(2013GXNSFFA019004
2014JJ70068)
广西教育厅重点项目(ZD2014052)
关键词
低密度奇偶校验码
单最小值最小和
估值参数
误码性能
low density parity check code
single-minimum Min-Sum algorithm
estimation parameter
error rate performance