期刊文献+

复杂场景下的加权粒子滤波行人跟踪方法 被引量:3

A Weighted Particle Filter for Pedestrian Tracking in Complex Scenarios
下载PDF
导出
摘要 针对粒子滤波跟踪算法在行人目标遮挡、光线干扰以及背景与行人相似等情形下,目标易发生漂移、跟踪精度不高的问题,本文提出一种加权粒子滤波行人跟踪方法。该方法联合遮挡模型和Online Boosting算法,利用在线学习实时更新强分类器,并结合跟踪时建立的遮挡模型,以及行人运动时与上一次目标位置的距离、相似度等影响因子,对粒子权重进行重新构造,实现了复杂变化场景下的行人自适应跟踪。对PETS-L2S1公共数据集和自有数据集的实验结果表明,本文提出的方法能有效去除目标遮挡、相似背景以及光线突变的干扰,实现稳定、准确、实时的行人跟踪。 Focusing on the problem that traditional particle filter tracking algorithm prone to drift and tracking accuracy is unsatisfactory when there is some interference from shading on the target, the light or which background is similar to the pe- destrian, a weighted particle filter for pedestrian tracking method is proposed. This method combines occlusion model and Online Boosting algorithm to reconstruct the particle weights, using online learning update strong classifiers in real time, meanwhile, combined with several impact factors, such as occlusion model, the distance and the similarity between last time target location and current location, to realize pedestrian adaptive tracking in the complex scenarios. Experiment re- sults on PETS-L2S1 public data and my own data set show that the proposed method can effectively remove the interference from object shelter, similar backgrounds and light mutation, the weighted particle filter method could accomplish pedestrian tracking stably, accurately and in real time.
作者 徐君妍 崔宗勇 罗远庆 曹宗杰 XU Jun-yan CUI Zong-yong LUO Yuan-qing CAO Zong-jie(School of Electronic Engineering, University of Electronic Science and Technology of China, Chengdu, Siehuan 611731, China)
出处 《信号处理》 CSCD 北大核心 2017年第7期934-942,共9页 Journal of Signal Processing
基金 四川省科技支撑计划重点研发项目(2015GZ0109) 国家自然科学基金(61271287 U1433113)
关键词 行人跟踪 粒子滤波 遮挡模型 加权算法 pedestrian tracking particle filter occlusion model weighted algorithm
  • 相关文献

参考文献5

二级参考文献54

  • 1王俊,张守宏,保铮.基于外照射的无源相干雷达系统及其关键问题[J].电波科学学报,2005,20(3):381-385. 被引量:22
  • 2李良群,姬红兵,罗军辉.迭代扩展卡尔曼粒子滤波器[J].西安电子科技大学学报,2007,34(2):233-238. 被引量:60
  • 3Javad O, Shafique K, Shah M. Appcarance modeling for tracking in multiple non-overlapping cameras[C] //Proc of the 2005 IEEE Conf on Computer Vision and Pattern Recognition. Piscataway, N J: IEEE, 2005:26 33.
  • 4Li Wei, Zhao Rui, Wang Xiaogang. Human reidentification with transferred metric learning [C] //Proc of the llth Asian (7onfon Computer Vision. Berlin: Springer, 2012:.31-44.
  • 5Zheng Weishi, Gong Shaogang, Xiang "Fao. Person re- identification by probabilistic relative distance comparison [C] //Proc of the 201J Conf on Computer Vision and Pattern Recognition. P/scataway, NJ: IEEE, 2011:649-656.
  • 6Farenzena M, Bazzani I., Perina A, et al. Person re identification by symmetry driven accumulation of local features [C] //Proc of the 2010 Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: II2Et"2, 2010: 230- 2367.
  • 7Zhao Rui, Ouyang Wanli, Wang Xiaogang. Unsupervised salience learning for person re identification [C] //Proc of the 2013 Conf on Computer Vision and Pattern Recognition. Piscataway, NJ: IEEE, 2013:a586-3593.
  • 8Ma Kai, Ben Arie J. Vector array based muhi view face detection wilh compound exemplars [C] //Proc of the 2012 Conf on Computer Vision and Pattern Recognitinn. Piseataway, NJ: IEEE, 2012:3186-3193.
  • 9Hu Yang, I.iao Shengeai, l.ei Zhen, et al. Exploring structural information and fusing multiple features for person re idenlification [C] //Proc of lhe 2013 onf on ompzlter Vision and Pattern Recognition Workshops. Piscataway, N J: 1EEE, 2013:794 799.
  • 10Yang Yi, Ramanan D. Articulated pose estimation with flexible mixtures of pnrts [C] //Proc of the 2011 Conf on Computer Vision and Pattern Recognition. Piscataway NJ, IEEE, 2011:1385-1392.

共引文献209

同被引文献27

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部