期刊文献+

中国传统园林“式地图者鲜矣”的原因探析

Analysis of the Reason for Chinese Traditional Garden "Rarely Draw Landscape Plan"
下载PDF
导出
摘要 从西方建筑学的设计表达方法即平面、立面和剖面入手,对中国传统园林和西方古典园林的案例进行分析、比较。结果发现,西方古典园林由于沿用了西方建筑学的平立剖方法,其设计是基于欧氏几何二维面的平面设计,中国古典园林是基于非欧几何的三维的空间设计。因此,中国传统园林的的设计很难画出平立剖图,只能以烫样结合山水画的形式表达设计结果。现代计算机三维软件的出现,为中国传统园林的分析、设计、教学提供了有利条件,也为其传承提供了便利。 The paper analyzed and compared the cases of Chinese traditional gardens and Western classical gardens, also from the point of the plane, elevation and section of the design expression method of Western Architecture. The result showed that Western classical gardens follow design method of Western Architecture from the plane, to elevation and section. Western classical gardens are two-dimensional graphic design based on Euclidean geometry. Chinese traditional gardens were three-dimensional space design based on Non Euclidean geometry. Therefore, it was difficult for Chinese traditional garden design to draw the plane, elevation and section, the design results could be expressed in the form of modeling combined with landscape paintings. With the emergence of 3D software of modern computer, which provided favorable conditions for the analysis, design and teaching of Chinese traditional gardens,and provided convenience for the inheritance of Chinese traditional garden.
作者 刘路祥 黄玉上 冯媛 田朝阳 LIU Luxiang HUANG Yushang FENG Yuan TIAN Chaoyang(College of Forestry, Henan Agricultural University, Zhengzhou,Henan 450002, Chin)
出处 《天津农业科学》 CAS 2017年第7期107-112,共6页 Tianjin Agricultural Sciences
基金 国家自然科学基金青年项目(41401206)
关键词 中国传统园林 西方古典园林 欧氏几何 设计方法 平面 Chinese traditional garden western classical garden euclidean geometry design method plane
  • 相关文献

参考文献12

二级参考文献14

  • 1王绍增.从画框谈起[J].中国园林,2006,22(1):16-18. 被引量:27
  • 2蔡仲.对欧几里得理性的文化思考[J].南京大学学报(哲学.人文科学.社会科学),1998,35(1):54-59. 被引量:3
  • 3洪业主编.《勺园图录考》.民国三十三年(1944).
  • 4明·董其昌.《容台别集·卷四·画旨·题米仲诏备石图》,崇祯三年刻本.
  • 5《范进士大任子十义序》.
  • 6明·张鼎.《宝臼堂初集·卷十一·范进士大任子十义序》,四库禁毁书丛刊·集部76.
  • 7Max Rissetada. Rumple versus Plan Libre, Rizzoli Internantional Publications, 1988.
  • 8欧几里得;兰纪正.汉译经典-几何原本[M]南京:译林出版社,2011.
  • 9Manfredo Do Carmo. Differential Geometry of Curves and Surfaces[M].New Jersey:Prentice Hal,1976.
  • 10吴振奎;吴旻.数学中的美[M]哈尔滨:哈尔滨工业大学出版社,2011.

共引文献180

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部