期刊文献+

二硫化钼纳米片基纳米团簇的制备及其在近红外激光的热转换性能

Fabrication of MoS_2 Nanosheet-Based Nanocluster and Thermal Conversion Performance Under Near-Infrared Laser
原文传递
导出
摘要 探讨了γ-聚谷氨酸(γ-PGA)介导合成γ-PGA/二硫化钼(MoS_2)纳米团簇的可行性,分析了γ-PGA/MoS_2纳米团簇在近红外激光的热转换性能。将γ-PGA和合成MoS_2纳米片的前驱体四硫代钼酸铵同时溶解于蒸馏水中,通过水热法自下而上一步合成出了γ-PGA修饰的MoS_2纳米团簇,MoS_2纳米团簇的直径为(197.3±26.6)nm。团簇结构的形成可能与Mo^(4+)离子和γ-PGA链中羧基上氧原子的配位作用有关。在水热反应过程中,由于这种配位作用的存在,生成的MoS_2纳米片可能进一步以γ-PGA分子链中氧原子为中心形成团簇。该纳米团簇具有优异的胶体稳定性、光热转换性能(质量消光系数为11.23L·g^(-1)·cm^(-1))和细胞相容性,有望在肿瘤的光热治疗等领域得到应用。 The feasibility of γ-PGA/MoS2 nanocluster synthesized with the assistance ofγ-poly glutamic acid (γ- PGA) is discussed. Thermal conversion performance of γ-PGA/MoS2 nanocluster under near-infrared laser is analyzed. γ-PGA and (NH4)2 MoS4 which is the precursor of MoS2 nanosheet are dissolved into distilled water, and γ-PGA modified MoSz nanocluster is synthesized from bottom to top with hydrothermal method. The diameter of nanocluster is (197.3± 26.6) nm. NanocIuster configuration may he relevant to the coordination between Mo4+ ion and oxygen atom belonging to the carboxyl group of γ-PGA. During the hydrothermal reaction process, generated MoSz nanosheets may form clusters due to the existence of coordination, and the oxygen atoms in γ-PGA molecular chain are the center. Nanoclusters show excellent colloidal stability, photothermal conversion performance (with mass extinction coefficient of 11.23 L·g ^-1 · cm^-1 ) and admirable cytocompatibility, and they are expected to be applied to the field of photothermal therapy for tumor.
出处 《中国激光》 EI CAS CSCD 北大核心 2017年第7期179-185,共7页 Chinese Journal of Lasers
基金 上海市地方高校能力资源建设项目(14440502300) 上海市晨光计划(15CG52) 上海市青年科技英才扬帆计划(17YF1412600) 上海高校青年教师培养资助(slg16054)
关键词 材料 医用光学 Γ-聚谷氨酸 二硫化钼纳米片 纳米团簇 光热转换性能 materials medical optics γ-poly glutamic acid MoS2 nanosheet nanocluster photothermal conversion performance
  • 相关文献

参考文献2

二级参考文献60

  • 1Zhang, X.; Xie, Y. Chem. Soc. Rev. 2013, 42, 8187.
  • 2Novoselov, K.; Geim, A. K.; Morozov, S.; Jiang, D.; Katsnelson, M.; Grigorieva, I.; Dubonos, S.; Firsov, A. Nature 2005, 438, 197.
  • 3Sun, Y.; Gao, S.; Lei, F.; Xiao, C.; Xie, Y. Acc. Chem. Res. 2015, 48, 3.
  • 4林源为,郭雪峰.化字字报,2013,72,277.
  • 5Lui, C. H.; Liu, L.; Mak, K. F.; Flynn, G. W.; Heinz, T. F. Nature 2009, 462, 339.
  • 6Novoselov, K. S.; Geim, A. K.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A. Science 2004, 306, 666.
  • 7Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Nano Lett. 2010, 10, 3318.
  • 8Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Small 2011, 7, 1876.
  • 9Geim, A. K. Science 2009, 324, 1530.
  • 10Butler, S. Z.; Hollen, S. M.; Cao, L.; Cui, Y.; Gupta, J. A.; Gutierrez, H. R.; Heinz, T. F.; Hong, S. S.; Huang, J.; Ismach, A. F. ACSNano 2013, 7, 2898.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部