期刊文献+

迷宫密封结构设计优化 被引量:5

Shape Optimization of a Labyrinth Seal Configuration
下载PDF
导出
摘要 耦合Kriging代理模型、迷宫密封参数化方法和自适应差分进化算法,在数值验证的基础上,完成了某迷宫式密封多目标鲁棒性设计优化。优化时,选取压比和密封间隙作为不确定性变量,同时选取齿厚等10个几何参数作为优化变量,以迷宫密封泄漏量的均值及其方差最小为目标,进行多目标优化。优化后,在给定压比和间隙条件下,最优设计泄漏量降低了29.85%,在压比及间隙同时变化时,密封性能提升同样明显,从而验证了多目标设计优化方法的正确性。 A multi-objective robust optimization method is proposed and implemented for the design of a labyrinth seal upon nu- merical validation. This method combines the Kriging surrogate model with parameterization method of a labyrinth seal, and self-adaptive multi-ohjective differential evolution algorithm (SMODE) as well. The multi-objective optimization is conducted for mini- mizing averaged leakage flow with minimum variance. In the optimization process, pressure ratio and seal clearance are set as un- certainty variables, and other 10 geometrical parameters are set as optimization variables. After optimization, the leakage flow rate of the optimal solution is reduced by 29.85% when pressure ratio and seal clearance are set as constant. And such smaller leakage flow maintained when pressure ratio and seal clearance are varied. Therefore, the correctness and effectiveness of the proposed method is demonstrated.
作者 刘勇 梁崇治
出处 《东方汽轮机》 2017年第2期16-20,共5页 Dongfang Turbine
关键词 迷宫式密封 多目标优化 Kriging代理模型 labyrinth seal. multi-objective optimization, Kriging surrogate model
  • 相关文献

参考文献1

二级参考文献21

  • 1席光,王志恒,王尚锦.叶轮机械气动优化设计中的近似模型方法及其应用[J].西安交通大学学报,2007,41(2):125-135. 被引量:45
  • 2Shah S, Wang G G. Survey of Modeling and Optimiza- tion Strategies to Solve High-Dimensional Design Prb- lems with Computationally-Expensive Black-Box I"um.- lions[J ]. Strttcturd and Mtllidisciplinary Optimizltiot, 2010.41(2):219-241,.
  • 3Oyama A, l,iou M S, Obayashi S. Transonic Axial- Flow Blade Optimizati.n: Evolutimary A Three- Dimensional Navier-Stokes Solver[J] of PropuLsion tnd Power, 2004, 20( 4 ) : 612-6.
  • 4Lian Y. IAou M S. Multi-Objective Optim Transonic Compressor Blade Using Evolution rithm [J]. Jourmd of Propulsion and Power, (6): 979-987. gorithms/ Jo.rnul ary Algn- 2005, 21.
  • 5Okui H. Verstraete T. Van den Braeml;ussche R A. et al. Three-Dimensional Design and Optimization of a Transonic Rotor ill Axial l:low Compressors [ J]. Jollrn,I of Turbom achinery. 2013. 135 ( 3 ).
  • 6Jones D R, Schonlau M, Welch W J. Efficient Global Optimization of Expensive Black- Box Functions [J]. Journal of Global optimization, 1998, 13(4):455-492.
  • 7Jeong S, Obayashi S. Efficient Global Optimization (EGO) for Multi-Objective Problem and Data Mining [J]. Evolutionary Computation, 2005, 3: 2138-2145.
  • 8Simpson T W, Toropov V, Balabanov V, et al. Design and Analysis of Computer Experiments in Multidisci- plinary Design Optimization: a Review of How Far we Have Come or Not[R]. A1AA 2008-5802.
  • 9Jeong S, Chiba K, Obayashi S. Data Mining for Aerody- namic Design Space [J]. Journal of Aerospace Comput- ing, Information, and Communication, 2005, 2 (11) 452-469.
  • 10Oyama A, Nonomura T, Fujii K. Data Mining of Pare- to-Optimal Transonic Airfoil Shapes Using Proper Or- thogonal Decomposition [J]. Journal of Aircraft, 2010, 47(5): 1756-1762.

共引文献12

同被引文献16

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部