期刊文献+

基于超流体几何投影矢量机制的高频混沌移动信号优化算法 被引量:1

The chaotic network signal optimization algorithm based on the fluid geometry projection vector mechanism
下载PDF
导出
摘要 针对当前高频混沌移动网络信号解调过程中存在星座结构辨析困难、投影复杂度高和信号解析效率低等难题,提出了基于超流体几何投影矢量机制的高频混沌移动信号解调算法。基于互相正交的三维旋转矢量平面投影方式,构建超流体几何投影机制,并获取星座接收结构,且将接收信号进行基于正交平面方式的投影分解,提高对基准矢量的获取效率。根据超流体星座接收结构特征,按环状接收方式对接收节点进行层次排列,并引入性能排序方式降低信号互相干扰现象。依据信号矢量映射方式构建信号裁决矢量,采用线性方式对独立同分布的接收信号进行分解,有效避免接收信号投影在旋转控制域上的重叠和高混沌噪声干扰。仿真实验表明,与当前混合噪声自旋解调算法、高频超高阶随机信号解调算法对比,本文算法具有更强的抗噪和抗衰落性能。 Current constellation structure of high frequency signal chaos mobile network demodulation process has problem of the projection of high complexity and low efficiency problem of signal analysis. The chaotic signal demodulation algorithm of super high frequency mobile fluid mechanism was proposed based on geometric projection vector. The super fluid geometric projection mechanism was constructed based on 3D rotation vector plane projection method with orthogonal to each other and obtain constellation receiver,as well as the access efficiency of the reference vector was improved based on orthogonal projection plane. According to the superfluid constellation receiving structure characteristics and based on the way of receiving node loop receiving hierarchy,a performance ranking method is introduced to reduce the signal interference phenomenon. Using the signal vector mapping method to build decision signal vector and using linear mode to decompose the received signal,which effectively avoid the received signal in the control domain of the rotating projection overlap and high chaotic noise. The simulation results show that the proposed algorithm has better anti noise and anti-fading performance compared with the current high temperature super high order random signal demodulation algorithm.
作者 赵男男 高健
出处 《河南理工大学学报(自然科学版)》 CAS 北大核心 2017年第4期98-105,共8页 Journal of Henan Polytechnic University(Natural Science)
基金 国家科技重大专项基金资助项目(2013ZX03002006) 辽宁省科技攻关项目(2013217004)
关键词 高频混沌移动信号 信号解调 超流体 几何投影矢量映射 信号裁决 high frequency ultra chaotic mobile signal signal demodulation super fluid geometric projection vector mapping signal decision
  • 相关文献

参考文献4

二级参考文献50

  • 1孙守宇,郑君里,吴里江,赵莹.峭度自适应学习率的盲信源分离[J].电子学报,2005,33(3):473-476. 被引量:11
  • 2Aissa-EI-Bey, Linh-Trung N, and Abed-Meraim K, et al.. Underdetermined blind separation of nondisjoint sources in the time-frequency domain. IEEE Transactions on Signal Processing, 2007, 55(3): 897-907.
  • 3Delorme A, Sejnowski T, and Makeig S. Enhanced detection of artifacts in EEG data using high-order statistics and independent component analysis[J]. Neuroimage, 2007, 34(4) 1443-1449.
  • 4Bofill P and Zibulevsky M. Underdetermined blind source separation using sparse representations [J]. Signal Processing, 2001, 81(11): 2353-2362.
  • 5Donoho D L and Elad M. Optamally sparse representation in general dictionaries via ll-norm minimization[J]. Proceedings of the National Academy of Sciences of the USA, 2003, 100(4) 2197-2202.
  • 6Li Y Q, Cichoci A, and Amari S. Analysis of sparse representation and blind source separation[J]. Neural Computation, 2004, 16(6): 1193-1234.
  • 7Fevotte C and Godsill S. A Bayesian approach for blind separation of sparse sources[J]. IEEE Transactions on Audio Speech Language Process, 2006, 16(6): 2174-2188.
  • 8Araki S, Sawada H, and Mukai R. Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors[J]. Signal Processing, 2007, 87(8): 1833-1847.
  • 9Hamada T, Nakano K, and Ichijo A. Wavelet-based underdetermined blind source separation of speech mixtures. IEEE ICCAS, Seoul, Korea, 2007: 2790-2794.
  • 10Peng D and Xiang Y. Underdetermined blind source separation based on relaxed sparsity condition of sources[J]. IEEE Transactions Signal Processing, 2009, 57(2): 809-814.

共引文献59

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部