摘要
研究食饵具有阶段结构,捕食者具有收获和时滞的Beddington-DeAngelis功能反应的捕食-食饵模型.选取合适的收获率,通过分析相应平衡点处的特征方程,得到各平衡点局部渐近稳定的条件.以时滞τ为分支参数,运用Hopf分支理论,得到当τ经过临界值τ_0时系统出现Hopf分支.最后,用Matlab软件进行数值仿真,并验证结论的正确性.
A predator-prey model with Beddington-DeAngelis functional response of predator with harvesting and time delay and the stage structure for prey are investigated in this paper.Select the appropriate harvest rate,the conditions for the local asymptotic stability of the equilibrium point are obtained by analyzing the characteristic equation of the corresponding equilibrium point;by means of the Hopf bifurcation theorem and considering the delayτas a bifurcation parameter,Hopf bifurcation occurs when τ passes through the critical value τ0.Finally,Matlab is employed to carry out numerical simulation to verify our results.
出处
《华侨大学学报(自然科学版)》
北大核心
2017年第4期579-584,共6页
Journal of Huaqiao University(Natural Science)
基金
国家自然科学基金资助项目(61473237)
陕西省自然科学基础研究计划资助项目(2016JM1024)
陕西省教育厅科研计划项目(15JK2181)
西京学院科研基金资助项目(XJ160143)