摘要
针对传统煤矿电机滚动轴承故障诊断信号噪声大和诊断效率低等问题,提出了一种基于经验模态分解和形态滤波的轴承故障诊断方法。仿真结果验证了所提方法的可行性和有效性。
For the problems of high noise and low efficiency in the bearing fault diagnosis in traditional coal mine motors, a fault diagnosis method based on empirical mode decomposition and morphological filter is proposed. Simulation results show the feasibility and effectiveness of the proposed method.
出处
《煤炭技术》
北大核心
2017年第7期311-313,共3页
Coal Technology
关键词
经验模态分解
形态滤波
轴承
故障诊断
empirical mode decomposition
morphology filter
bearing
fault diagnosis