期刊文献+

磺化石墨烯/天然橡胶复合材料的性能研究 被引量:6

The Performance of Natural Rubber Composites Filled with Sulfonated Graphene
原文传递
导出
摘要 以磺化石墨烯为填料,将其填充到天然胶乳中,混合均匀后共沉淀,采用传统橡胶加工方法制备了天然橡胶复合材料。对磺化石墨烯的结构和形貌进行了表征,测定了硫化胶的力学性能、耐磨性能、透气性能和导热性能。研究结果表明:磺化石墨烯表面含有丰富的活性官能团,为少层片状结构,硫化胶的力学性能、耐磨性得到了提高,而透气性和导热性有所下降。当石墨烯添加量为2.0%(wt)时,复合材料的拉伸强度最大为27.06MPa;磨耗体积仅为0.08cm^3;导热系数最小为0.42W/(m·K);透气量最低,为1.98×10^(-4)cm^3/(m^2·d·Pa)。 In this paper,sulfonated graphene(SG) as fillers mixed and coprecipitated with natural latex,the natural rubber (NR) composites filled with SG were prepared using traditional rubber manufacture.The structure and morphology of SG were tested.The mechanical property,abrasion resistance,gas resistance,and thermal property of vulcanized rubber were investigated.The results showed that there were abundance activity functional groups in the surfaces and less slice layer structure of sulfonated graphene.The mechanical and wear resistance properties of composite were improved,but the permeability and heat conductivity were fell.When the graphene addition amount was 2.0% (wt),the tensile strength of the composite was the largest,27.06MPa;wear volume was 0.08cm^3;thermal conductivity is 0.42W/Mk;permeability coefficient was 1.98 × 10^-4 cm^3/m^2 · d.
出处 《高分子通报》 CSCD 北大核心 2017年第6期32-38,共7页 Polymer Bulletin
基金 上海工程技术大学大学生创新项目(cs1504009) 苏州高通新材料科技有限公司合作项目((15)HG-001)
关键词 磺化石墨烯 天然橡胶 力学性能 透气性能 导热性能 Sulfonated graphene Natural rubber Mechanical property Gas permeability Thermal property
  • 相关文献

参考文献1

二级参考文献18

  • 1Verdejo R, Bernal M M, Romasanta LJ, et al. Graphene filled polymer nanocomposites[J].J Mater Chern, 2011, 21: 3301-3310.
  • 2PottsJ R, Shankar 0, Du L, et al. Processing-morphology-property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites [J]. Macromolecules, 2012, 45(15): 6045-6055.
  • 3Yan C, ChoJ H, AhnJ H. Graphene-based flexible and stretchable thin film transistors[J]. Nanoscale, 2012,4 (16): 4870-4882.
  • 4Zhang K, Zhang L L, Zhao X S, et al. Graphene/polyaniline nanofiber composites as supercapacitor electrodes[J]. Chern Mater, 2010, 22: l392-l401.
  • 5Chun L, Shi G. Three-dimensional graphene architectures[J]. Nanoscale , 2012, 4: 5549-5563.
  • 6Yin S, Niu Z, Chen X. Assembly of Graphene sheets into 3D macroscopic structures[J]. Small, 2012,8(16) :2458-2463.
  • 7VickeryJ L, Patil AJ, Mann S. Fabrication of graphenepolymer nanocomposites with higher-order three-dimensional architectures[J]. Adv Mater, 2009, 21: 2180-2184.
  • 8HummersJr W S, Offeman R E. Preparation of graphitic oxide[J] .J Am Chern Soc, 1958, 80: 1339-l339.
  • 9Park S, AnJ,J ung I, et al. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents[J] . Nano Letters, 2009, 9: 1593-1597.
  • 10Li X, Zhang G, Bai X, et al. Highly conducting graphene sheets and Langmuir-Blodgett films[J] Nat Nanotechnol, 2008, 3: 538-542.

共引文献9

同被引文献64

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部