期刊文献+

映射导数为s-凸函数且在分数次积分下的Hadamard型不等式 被引量:4

Hadamard-Type Inequalities with Mapping Derivatives Being s-Convex Functions and under Fractional Integrals
下载PDF
导出
摘要 建立一个Riemann-Liouville分数次积分恒等式,并利用s-凸函数的定义以及H9lder不等式等,对可微的s-凸映射建立一些涉及Riemann-Liouville分数次积分的新HermiteHadamard型不等式. The author established a Riemann-Liouville fractional integral identity,and used the definition of s-convex function and H9 lder inequality etc to establish some new Hermite-Hadamard type inequalities for differentiable s-convex mappings that were connected with the Riemann-Liouville fractional integrals.
作者 孙文兵 SUN Wenbing(Department of Science and Information Science, Shaoyang University, Shaoyang 422000, Hunan Province, Chin)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第4期809-814,共6页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:61672356) 湖南省自然科学基金(批准号:12JJ3008) 湖南省教育厅一般项目(批准号:15C1236)
关键词 HADAMARD不等式 s-凸函数 积分不等式 Riemann-Liouville分数次积分 Hadamard's inequality s-convex function integral inequality Riemann-Liouville fractional integral
  • 相关文献

参考文献2

二级参考文献32

  • 1Pearce C E M, PeSari5 J. Inequalities for differentiable mappings with application to special means and quadrature formula. Appl Math Lett, 2000, 13:51 55.
  • 2Yang G S, Hwang D Y, Tseng K L. Some inequalities for differentiable convex and concave mappings. Comp Math Appl, 2004, 47:207-216.
  • 3Alomari M, Darus M, Kirmaci U S. Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means. Comp Math Appl, 2010, 59:225-232.
  • 4Alomari M, Darus M. Some Ostrowski type inequalities for quasi-convex functions with applications to special means. RGMIA, 2010, 13(2) Article No 3.
  • 5Alomari M, Darus M. On some inequalities Simpson-type via quasi-convex functions with applications. Trans J Math Mech, 2010, (2): 15-24.
  • 6Alomaxi M, Daxus M. Ostrowski type inequalities for functions whose derivatives axe s-convex in the second sense. Appl Math Lett, 2010, (23): 1071-1076.
  • 7Alomari M, Darus M. On the Hadtamard's inequality for log-convex functions on the coordinates. J Ineq Appl, 2009, 2009: Article ID 283147.
  • 8Alomari M, Darus M. Fejr inequality br double integrals. Fa~ta Universitatis ~NIS) Ser Math Inform, 2009, (24): 15 28.
  • 9Alomari M, Darus M. On co-ordinated s-convex functions. Inter Math Forum, 2008, 3(40): 1977-1989.
  • 10Dragomir S S, Fitzpatrick S. The Hadamard's inequality for s-convex functions in the second sense. Demon- stratio Math, 1999, 32(4): 687-696.

共引文献11

同被引文献16

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部