摘要
用Nevanlinna理论,研究差分方程a_1(z)f(qz+p)+a_0(z)f(z)=F(z)一个有穷级超越亚纯解f(z)及任一亚纯函数g(z)分担0,1,∞IM时的唯一性问题(其中p,q为常数,满足n∈N^+,q^n≠±1,q≠0,a_1(z),a_0(z),F(z)为非零亚纯函数且级均小于1),得到了f(z)=g(z).
By using Nevanlinna theory,we studied the uniqueness problem for difference equation a_1(z)f(qz+p)+a_0(z)f(z)=F(z)when a inite-order transcendental meromorphic solution f(z)and any meromorphic function g(z)were sharing 0,1,∞ IM(where q,p were constants,n∈ N~+,q^n≠±1,q≠0,a_1(z),a_0(z),F(z)were nonzero meromorphic functions and the order was less than1),we got the result f(z)=g(z).
作者
杨引
叶亚盛
YANG Yin YE Yasheng(College of Science, University of Shanghai for Science and Technology, Shanghai 200093, Chin)
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2017年第4期815-820,共6页
Journal of Jilin University:Science Edition
基金
国家自然科学基金(批准号:11371139)
关键词
超越亚纯解
差分方程
分担值
唯一性
transcendental meromorphic solution
difference equation
sharing value
uniqueness