期刊文献+

一类变量核奇异积分交换子在Morrey空间中的紧性 被引量:4

Compactness of a Class of Singular Integral Commutators with Variable Kernels in Morrey Spaces
下载PDF
导出
摘要 利用球调和函数证明一类变量核奇异积分交换子[b,T]是Morrey空间L^(p,α)(R^n)(1<p<∞,0<α<n)上的紧算子.结果表明,在一定条件下,若存在p(1<p<∞),使得当交换子[b,T]是Morrey空间L^(p,α)(R^n)上的紧算子时,则b∈VMO(R^n). Using spherical harmonic functions,we proved that a class of singular integral commutators with variable kernels [b,T]was compact operator on Morrey spaces L^(p,α)(R^n)for 1p ∞ and0αn.The results show that,under a certain condition,we obtain b∈ VMO(R^n)if the commutator[b,T]is compact operator on Morrey space L^(p,α)(R^n)for some 1p∞.
作者 马宇勋 陶双平 MA Yuxun TAO Shuangping(College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Chin)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第4期821-827,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:11561062 11161042 11601434)
关键词 变量核 交换子 MORREY空间 紧性 variable kernel commutator Morrey space compactness
  • 相关文献

参考文献2

二级参考文献29

  • 1REN Xiang-ju.Boundedness of Calderón-Zygmund operators on the Weighted Herz-Morrey Spaces[J].巢湖学院学报,2007,9(3):6-10. 被引量:1
  • 2Calderon A. and Zygmund A., On a problem of Mihlin [J], Trans. Amer. Math. Soc., 1955, 78:209-224.
  • 3Calderon A. and Zygmund A., On singular integrals with variable kernels [J], Applicable Anal., 1977, 78(7):221 238.
  • 4Chiarenza F., Frasca M. and Longo P., Interior W^2,p estimates for nondivergence elliptic equations with discontinuous coefficiens [J], Ric. Math., 1991, 40:149-168.
  • 5Fazio G. Di. and Ragusa M., Interior estimates in morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients [J], J. Funct. Anal., 1993, 112:241-256.
  • 6Chen Y. and Ding Y., L^2 boundedness for commutator of rough singular integral with variable kernel [J], Rev. Mat. Iberoarn., 2008, 24:531-547.
  • 7Uchiyama A., On the compactness of operators of Hankel type [J], Tohoku Math., 1978, 30:163-171.
  • 8Calderon A. and Zygmund A., Singular integral operators and differential equations [J], Amer. J. Math., 1957, 79:901-921.
  • 9Yosida K., Functional Analysis [M], New York: Springer-Verlag, 1968.
  • 10Stein E. M., Harmonic Analysis, Real-Variable Methods, Orthogonality and Oscillatory Integrals [M], Princeton: Princeton University Press, 1993.

共引文献8

同被引文献7

引证文献4

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部