摘要
针对隐私保护数据挖掘中的维数灾难问题,提出一种基于随机投影技术的隐私保护算法.该算法通过定义l投影扰动和Prevent-Ω数据集的概念,构造一种根据投影维数的不同,投影矩阵的稀疏度也相应变化的稀疏投影数据扰动,增加了数据的安全性.实验结果表明,在保护数据隐私的前提下,该算法能有效保证数据挖掘应用中的数据质量.
Aiming at the problem of the curse of dimensionality in privacy preserving data mining,we proposed a privacy preserving algorithm based on the technique of random projection.We defined the concept of l projection perturbation and Prevent-Ωdata set,and constructed a sparse projection data perturbation based on projection dimension of different projection matrix sparsity corresponding changes,which increased the security of data.The experimental results show that this method can effectively guarantee the quality of data in data mining applications under the premise of protecting data privacy.
作者
朱献文
孙伟
ZHU Xianwen SUN Wei(College of International, Huanghuai University, Zhumadian 463000, Henan Province, Chin)
出处
《吉林大学学报(理学版)》
CAS
CSCD
北大核心
2017年第4期940-946,共7页
Journal of Jilin University:Science Edition
基金
河南省重点科技攻关项目(批准号:152102210023)