期刊文献+

基于压缩感知理论的线性分组码译码 被引量:1

Decoding of Linear Block Code Based on Compressive Sensing Theory
下载PDF
导出
摘要 将压缩感知理论应用于线性分组码的译码,提出差错图案E重构的压缩感知模型及校验矩阵H作为测量矩阵的构成形式和性质.将伴随式S作为测量信号,校验矩阵H作为测量矩阵,以(15,7)循环码为例,采用基追踪(BP)算法重构差错图案E的估值,并设计线性分组码译码的仿真实验方案.仿真实验结果表明,采用压缩感知理论与BP算法能较好完成线性分组码的译码. Applying the compressive sensing theory to the decoding of the linear block code,we proposed the compressive sensing model of the reconstructing the error pattern E,the check matrix H as the form and properties of the measurement matrix.The syndrome S was used as the measurement signal,the check matrix H was used as the measurement matrix,and the cyclic code(15,7)was used as the example to reconstruct the estimation of the error pattern E by using the basis pursuit(BP)algorithm.The simulation experiment scheme of the decoding of the linear block code was designed.The simulation experiment results show that the linear block codes can be decoded well by the compressive sensing theory and the BP algorithm.
作者 姜恩华 窦德召 赵庆平 JIANG Enhua DOU Dezhao ZHAO Qingping(School of Physics and Electronic Information, Huaibei Normal University, Huaibei 235000, Anhui Province, Chin)
出处 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第4期994-1000,共7页 Journal of Jilin University:Science Edition
基金 国家自然科学基金(批准号:41275027 11504121) 安徽省高校自然科学研究重点项目(批准号:KJ2016A628 KJ2016A650)
关键词 压缩感知(CS) 基追踪(BP)算法 循环码 BCH码 汉明码 校验矩阵 伴随式 差错图案 compressive sensing(CS) basis pursuit(BP)algorithm cyclic code BCH code Hamming code check matrix syndrome error pattern
  • 相关文献

参考文献3

二级参考文献36

  • 1Candes E. Compressive sampling in Proceedings of inter- national congress of mathematicians [ A ]. Zurich, Switzer- land: European Mathematical Society Publishing House, 2006, 1433-1452.
  • 2Baraniuk R. Compressive sensing[J]. IEEE Signal Pro- cessing Magzine, 2007, 24(4) : 118-121.
  • 3Candbs E, Romberg J and Tao T. Stable signal recovery from incomplete and inaccurate measurements [ J ]. Com- munications on Pure and Applied Mathematics, 2006, 59 (8) : 1207-1223.
  • 4Bajwa W, Haupt J, Sayeed A, et al. Compressive wire- less sensing [ A ]. Proceedings of the 5th International Conference on Information Processing in Sensor Net-works. New York : Association for Computing Machinery, 2006, 134-142.
  • 5Lustig M, Donoho D, and Pauly J. Sparse MRI: the ap- plication of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007, 58 : 1182-1195.
  • 6Goyal V, Fletcher A, and Rangan S. Compressive sam- piing and lossy compression [ J ]. IEEE Signal Process Magzine, 2008, 25(2): 48-56.
  • 7Baraniuk R, Davenport M, DeVore R, et al. A Simple Proof of the Restricted Isometry Property for Random Ma- trices [ J ]. Constructive Approximation, 2008, 28 ( 3 ) : 253-263.
  • 8DeVore R. Deterministic constructions of compressed sens- ing matrices [ J ]. Journal of Complexity, 2007, 23 (4- 6) : 918-925.
  • 9Holger R. Circulant and Toeplitz matrices in compressed sensing [ J ]. SPARS09, 2009, 2 ( 13 ) : 1124-1132.
  • 10Florian S, Leslie Ying, Yi-Ming Zhou. Toeplitz block matrices in compressed sensing[ J]. Information Technol- ogy and Applications in Biomedicine, 2008:47-50.

共引文献10

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部