摘要
提出了一种基于经验模式分解(EMD)、遗传优化的广义回归神经网络(GA_GRNN)和自回归移动平均(ARMA)组合模型的空间信息网络流量预测算法。描述了算法的主要理论和具体过程,通过与单一GRNN和ARMA模型的仿真对比,验证了组合模型的有效性。
This paper proposes a novel traffic prediction algorithm for space information network based on the combination models of empirical mode decomposition (EMD), generalized regression neural network optimized by genetic algorithm (GA_GRNN) and auto regressive moving average (ARMA). It presents the main theory and the concrete process of the proposed algorithm, and verifies the effectiveness of the combined model by comparing with the simulationof single GRNN and ARMA model.
作者
丁西峰
赵尚弘
李瑞欣
黎军
郑永兴
DING Xifeng ZHAO Shanghong LI Ruixin LI Jun ZHENG Yongxing(Information and Navigation College, Air Force Engineering University, Xi'an 710077, China Key Lab of Space Microwave, China Academy of Space Technology (Xi'an), Xi'an 710100, China Chongqing Communication Institute, Chongqing 400035, China)
出处
《光通信技术》
北大核心
2017年第7期40-43,共4页
Optical Communication Technology
基金
国家自然科学基金重大研究计划培育项目(批准号:91638101)资助
陕西省自然科学基金(批准号:2016JM6073)资助