期刊文献+

B-矩阵线性互补问题误差界的新估计式 被引量:2

A new estimate of the error bound for linear complementarity problems for B-matrices
原文传递
导出
摘要 B-矩阵是一类重要的P-矩阵,在线性互补问题的研究中具有重要作用.利用严格对角占优M-矩阵逆矩阵无穷范数上界的估计式,结合不等式放缩技术,给出了B-矩阵线性互补问题误差界的一个新估计式.理论分析和数值算例表明,新估计式改进了现有的几个结果. B-matrices, as one of the important subclass of P-matrices, play a critical role in the research of linear complementarity problems. Based on the range for infinity norm of inverse matrix of strictly diagonally dominant M-matrices, a new error bound for the linear complementarity problem when the matrix involved is a B-matrix is presented, which improves some existing ones.Numerical examples are given to show the corresponding results.
出处 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第4期523-528,共6页 Journal of Yunnan University(Natural Sciences Edition)
基金 国家自然科学基金(31600299) 陕西省科技厅自然科学基础研究计划(2017JQ3020) 陕西省高校科协青年人才托举基金(20160234) 宝鸡文理学院硕博科研启动基金(ZK2017021 ZK2017095)
关键词 P-矩阵 B-矩阵 线性互补问题 误差界 P-matrix B-matrix linear complementarity problem error bound
  • 相关文献

参考文献3

二级参考文献61

  • 1VARAHJ M.A lower bound for the smallest singular value of a matrix [ J ] .Linear Algebra Appl, 1975,11:3-5.
  • 2LI W. On Nekrasov matrices [ J ]. Linear Algebra Appl, 1998,28 : 187-86.
  • 3LI Y T,CHEN F B,WANG D F.New lower bounds on eigenvalue of the Hadamard product of an M-matrix and its inverse [ J ].Linear Algebra Appl, 2009,430:1 423-1 431.
  • 4NENAD M.Upper bounds for the infinity norm of the inverse of SDD and S-SDD matrices[ J] .Journal of Computational and Applied Mathematics, 2007,206: 666-678.
  • 5LI W.The infinity norm bound for the inverse of nonsingular diagonal dominant matrices [ J ]. Applied Mathematics Letters, 2008,21 : 258-263.
  • 6CHENG G L, HUANG T Z.An upper bound for A-1of strictly diagonally dominant M-matrices[ J] .Linear Algebra Appl, 2007,426:667-673.
  • 7WANG P. An upper bound for A- 1 of strictly diagonally dominant M- matriees [ J ]. Linear Algebra Appl, 2009,431 : 511 - 517.
  • 8HUANG T Z, ZHU Y. Estimation of for weakly chained diagonally dominant M- matrix [ J ]. Linear Algebra Appl. 2010,431 : 670-677.
  • 9Cottle R W, Pang J S,Stone R E. The linear complemen-tarity problem [ M ]. SanDiego : Academic, 1992.
  • 10Murty K G. Linear complementarity, linear and nonlinearprogramming[ M ]. Berlin : Heldermann Verlag, 1988.

共引文献41

同被引文献4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部