摘要
设p为奇素数,n,k为满足n/e为奇数的正整数,其中e=gcd(n,k).文章研究一类幂函数在F_(p^n)上的差分谱,其指数d满足同余方程d(p^k+1)≡2(mod p^n-1).这类指数将Sung-Tai Choi等人(2013)研究的幂函数所对应的两类指数进行了统一和推广.
Let p be an odd prime and n, k be integers such that n/e- is odd, where e = gcd(n, k). In this paper, we determine the differential spectrums for a class of power functions over Fpn with the exponent d satisfying d(pk + 1) ≡ 2(modpn - 1). These exponents are the unification and generalization of the two class of exponents investigated by Sung-Tai Choi, et al. (2013).
出处
《系统科学与数学》
CSCD
北大核心
2017年第5期1351-1367,共17页
Journal of Systems Science and Mathematical Sciences
基金
国家自然科学基金(61672212,11301161)资助课题
关键词
差分谱
幂函数
分圆数
有限域
Differential spectrum, power function, cyclotomic number, finite field