期刊文献+

一类幂函数在Fpn上的差分谱

Differential Spectrums for a Class of Power Functions over F_(p^n)
原文传递
导出
摘要 设p为奇素数,n,k为满足n/e为奇数的正整数,其中e=gcd(n,k).文章研究一类幂函数在F_(p^n)上的差分谱,其指数d满足同余方程d(p^k+1)≡2(mod p^n-1).这类指数将Sung-Tai Choi等人(2013)研究的幂函数所对应的两类指数进行了统一和推广. Let p be an odd prime and n, k be integers such that n/e- is odd, where e = gcd(n, k). In this paper, we determine the differential spectrums for a class of power functions over Fpn with the exponent d satisfying d(pk + 1) ≡ 2(modpn - 1). These exponents are the unification and generalization of the two class of exponents investigated by Sung-Tai Choi, et al. (2013).
作者 田诗竹 陈媛
出处 《系统科学与数学》 CSCD 北大核心 2017年第5期1351-1367,共17页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61672212,11301161)资助课题
关键词 差分谱 幂函数 分圆数 有限域 Differential spectrum, power function, cyclotomic number, finite field
  • 相关文献

参考文献4

二级参考文献87

  • 1李超,屈龙江,周悦.密码函数的安全性指标分析.北京:科学出版社,2011.
  • 2Biham E, Shamir A. Differential cryptanalysis of DES-like cryptosystems. J Cryptology, 1991, 4:3-72.
  • 3Bracken C, Byrne E, Markin N, et al. Determining the nonlinearity of a new family of APN functions. In: Proceedings of AAECC-17 Conference, Lecture Notes in Computer Science, vol. 4851. Berlin: Springer, 2007, 72-79.
  • 4Bracken C, Byrne E, Markin N, et al. New families of quadratic almost perfect nonlinear trinomials and multinomials. Finite Fields Appl, 2008, 14:703-714.
  • 5Bracken C, Byrne E, Markin N, et al. A few more quadratic APN functions. ArXiv: 0804.4799vl, 2007.
  • 6Bracken C, Byrne E, McGuire G, et al. On the equivalence of quadratic APN functions. Des Codes Cryptogr, 2011, 61:261-272.
  • 7Bracken C, Leander G. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite Fields Appl, 2010, 16:231-242.
  • 8Brinkmann M, Leander G. On the classification of APN functions up to dimension five. Des Codes Cryptogr, 2008, 49:273-288.
  • 9Browning K, Dillon J F, Kibler R E, et al. APN polynomials and related codes. J Combin Inform Syst Sci, 2009, 34: 135-159 .
  • 10Browning K A, Dillon J F, McQuistan M T, et al. An APN permutation in dimension six. Amer Math Soc Contemp Math, 2010, 518:33-42.

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部