摘要
提出一种基于多特征融合的图像区域几何标记方法.首先,提出了一种新型卷积网络结构——多尺度核卷积网络用于提取像素点的多尺度特征信息,推断像素点的几何类别,并结合图像超像素分割获得图像超像素区域的几何标记;其次,将提取的多尺度特征与超像素区域传统特征相结合,建立超像素区域的特征表达.最后,建立超像素图像的条件随机场(conditional random field,CRF)模型,对超像素区域的几何类别进行推断.在公开数据集Geometric Context(GC)上的实验结果表明,同已有算法相比,所提方法提高了图像区域几何标记的准确率.
A geometric labeling method of image regions was proposed based on combination of multiple features. First of all, according to the requirement of multi-scale feature information extraction,a novel network structure-multi-scale kernel convolutional network (MSKCN) was proposed. The multi-scale feature information was used for inferring geometric label of pixel. The geometric labeling of super-pixel regions with the image super-pixel segmentation was achieved. Then a feature representation of super-pixel regions was established by combining multi-scale features proposed and traditional features of super-pixel regions. Finally, a CRF ( conditional random field) model was constructed for the super-pixel image to infer geometric label of super-pixel regions with the image super-pixel segmentation. The experiments on public database Geometric Context (GC) indicated that the accuracy of geometric labeling was improved by using the proposed method compared with the existing state- of- art.
出处
《东北大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2017年第7期927-931,共5页
Journal of Northeastern University(Natural Science)
基金
国家自然科学基金资助项目(61273239)
中央高校基本科研业务费专项资金资助项目(N151802001)
关键词
多特征融合
多尺度核卷积网络
图像区域几何标记
特征学习
条件随机场模型
combination of multiple features
multi-scale kernel convolutional network
geometric labeling of image regions
feature learning
conditional random field model