期刊文献+

低温预处理对正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2结构与电化学性能的影响

Influences of Low-temperature Pretreatment on Structure and Electrochemical Properties of LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2 Cathode Material
下载PDF
导出
摘要 以水热法制备的Li-Ni-Co-Mn-O锂化前驱体为原料,采用两段煅烧法合成了具有α-NaFeO_2型结构的LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2正极材料,通过X射线衍射分析(XRD)、扫描电子显微镜(SEM)和电化学性能测试对不同低温预处理温度制备的正极材料进行了表征。研究结果表明:低温预处理温度为500℃时,制备的正极材料LiNi_(0.5)Co_(0.2)Mn_(0.3)O_2具有最优的电化学性能,在3.0~4.3V电压范围内,0.1C下初始容量为169.4mAh/g,0.5C倍率下50次循环后放电比容量为145.3mAh/g,容量保持率高达95.5%。 The cathode material Li LiNi0.5Co0.2Mn0.3O2 with a α-NaFeO2 structure was synthesized through a two-step calcination process with the lithiated precursor of Li-Ni-Co-Mn-O prepared by a hydrothermal process as a raw material.Then,the synthesized cathode materials with pretreatment at different temperatures were characterized by X-ray diffraction(XRD),scanning electron microscope(SEM) and electrochemical properties analyses. Results show that after pretreatment at a temperature of 500 ℃,the synthesized cathode material LiNi0.5Co0.2Mn0.3O2 exhibits a better electrochemical performance. It delivers a reversible specific capacity of 169.4 m Ah/g in the 1st cycle at 0.1C over 3.0 ~4.3 V and a discharge specific capacity of 145.3 m Ah/g at 0.5C after 50 cycles,with capacity retention up to 95.5%.
出处 《矿冶工程》 CSCD 北大核心 2017年第3期118-121,128,共5页 Mining and Metallurgical Engineering
基金 广西自治区"八桂学者"专项经费资助计划(2011A025)
关键词 锂离子电池 正极材料 低温预处理 电化学性能 lithium ion battery cathode material low-temperature pretreatment electrochemical properties
  • 相关文献

参考文献6

二级参考文献58

  • 1刘韩星,郝华,欧阳世翕.锂离子电池正极材料微波合成工艺与电性能[J].材料科学与工程学报,2000,20(z1):495-498. 被引量:2
  • 2于永丽,翟秀静,符岩,王云霞,张爱黎.微波法合成锂离子材料LiCoO_2的研究[J].分子科学学报,2004,20(3):7-11. 被引量:3
  • 3周健,戴秀珍.B元素对正极材料LiCoO_2结构及性能的影响[J].安徽大学学报(自然科学版),2007,31(2):67-70. 被引量:3
  • 4Li J, KlaPsch R, Stan M C, et al. Synthesis and electrochemical per-formance of the high voltage cathode material Li [ Lio.2 Mno.56 Nio.16 Coo.0~ ]02 with improved rate capability[ J]. Journal of Power Sources, 2011,196(10) :4821-4825.
  • 5Liu J L, Wang J, Xia Y Y. A new rechargeable lithium-ion battery with a xLi2MnO3 · (1-x) LiMn0.4 Nio.4Co0.2 02 cathode and a hard carbon anode [ J ]. Electrochimica Acta, 2011,56 ( 21 ) : 7392-7396.
  • 6CHANG Zhao-rong, YU Xu, TANG Hong-wei, et al. Sythesis of LiNil/3Col/3A11/3O2 cathode material with euteetic molten salt LiOH- LiNO3 [J]. Powder Technology, 2011,207(1-3) :396-400.
  • 7Jeong J H, Jin B S, Kim W S, et al. The influence of compositional change of 0.3Li2MnO3 · 0.7LiMn1-xNiyCoo.102(0.2≤x≤0.5, y=x- 0.1 ) cathode materials prepared by co-precipitation [ J ]. Journal of Power Sources, 2011,196 (7) : 3439-3442.
  • 8Wang Jun, Yuan Guo-xia, Zhang Ming-hao, et al. The structure, morphology, and electrochemical properties of Li1+x Nil/6 COl/6 Mn4/6 02.2s+x/2(0.1 ≤x≤0.7) cathode materials[ J]. Electrochimiea Acta, 2012, 66:61-66.
  • 9He zhen-jiang, Wang zhi-xing, Guo hua-jun, et al. Synthesis and electrochemical performance of xLi2MnO3 ·(1-x) LiMno.s Ni0.4Co0.102 for lithium ion battery[ J]. Powder Technology, 2013,235 : 158-162.
  • 10Armstrong A R, Holzapfel M, Novak P, et al. Demonstrating Oxygen Loss and Associated Structural Reorganization in the Lithium Battery Cathode Li [ Ni0.2 Li0.2 Mn0.5 ] O2 [ J ]. Journal of The American Chemi- cal Society, 2006, 128(26) :8694-8698.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部