期刊文献+

基于改进Fisher准则与极限学习机集成的图像隐写分析 被引量:2

An Image Steganalysis Algorithm Based on Improved Fisher Criterion and Extreme Learning Machine Ensemble
下载PDF
导出
摘要 集成分类器是目前图像隐写分析中广泛使用的分类器。针对集成分类器中基分类器受离群样本影响较大,集成策略效果不佳的缺点,提出一种基于改进Fisher准则与极限学习机集成的图像隐写分析算法。首先,通过重新定义类内散度矩阵以提高Fisher准则模型的准确性,之后基于改进的Fisher准则并使用Bagging算法训练若干基分类器,最后使用极限学习机作为元分类器来建立基分类器集合与正确决策之间的联系。实验结果表明,在不同的隐写算法与嵌入率的条件下,与传统集成分类器和基于选择性集成的集成分类器相比,所提算法降低了3.5%与1.8%的检测错误率,说明能够有效提高集成分类器的检测精度。 The ensemble classifiers is one of the most widely used image steganalysis methods now.Since the base learners of ensemble classifiers were influenced by outlier samples highly and the effect of fusion method was bad, an image steganalysis algorithm based on improved Fisher criterion and extreme learning machine ensemble was proposed.First, the new method improved the accuracy of Fisher model through redefining the within class scatter, then some base learners were generated based on improved Fisher criterion and Bagging algorithm, at last, an extreme learning machine was trained as a metalevel classifier to learn the relationship between base learners decisions and true decisions.Experimental results show that the average error rate of the proposed method decreases by 3.5% and 1.8% in comparison to typical ensemble classifiers and ensemble classifiers based on selective ensemble, therefor demonstrating the proposed method could improve the accuracy of ensemble classifiers.
出处 《科学技术与工程》 北大核心 2017年第18期89-95,共7页 Science Technology and Engineering
基金 国家自然科学基金(61379152)资助
关键词 隐写分析 集成分类器 基分类器 FISHER准则 极限学习机 steganalysis ensemble classifiers base learner Fisher criterion extreme learning machine
  • 相关文献

参考文献4

二级参考文献43

  • 1叶世伟 史忠植译.神经网络原理[M].北京:机械工业出版社,2004..
  • 2Kong X W, Liu W F, You X G. Secret message location stega- nalysis based on local coherences of Hue [ C ]// Proceedings of the Advances in Multimedia Information Processing. Berlin: Springer-Verlag, 2005 : 301-311. [DOI: 10. 1007/11582267_ 27 ].
  • 3Lee K, Jung C H, Lee S J, et al. Color cube analysis for detec-tion of LSB steganagraphy in RGB color images [ C ]// Proceed- ings of the Computational Science and Its Applications. Berlin: Springer-Verlag, 2005:537-546. [DOI: 10. 1007/11424826_ 57].
  • 4Ker A D. Improved detection of LSB steganography in grayscale images [ C]//Proceedings of the 6th International Workshop on Information Hiding. Berlin: Springer-Verlag, 2004: 97-115. [ DOI : 10. 1007/978-3-540-30114-1_8 ].
  • 5Zhang X P, Wang S Z. Efficient steganographic embedding by exploiting modification direction [ J ]. IEEE Signal Processing Letters, 2006, 10( 11 ) :781-783. [DOI: 10. 1109/LCOMM. 2006. 060863 ].
  • 6Luo W Q, Huang F J, Huang J W. Edge adaptive image stag- anography based on LSB matching revisited [J]. IEEE Transac- tions on Information Forensic and Security, 2010, 5 ( 2 ) : 201- 214. [ DOI: 10. 1109/TIFS. 2010. 2041812].
  • 7Pevny T, Filler T, Bas P. Using high-dimensional image models to perform highly undetectable steganography [ C ]// Proceedings of the 12th International Workshop on Information Hiding. Berlin: Springer-Verlag, 2010:161-177. [DOI: 10. 1007/978- 3-642-16435-4_13 ].
  • 8Holub V, Fridrich J. Designing steganographic distortion using directional filters [ C ]// Proceedings of the 4th IEEE Internation- al Workshop on Information Forensics and Security. Washington DC: IEEE Computer Society, 2012:234-239. [DOI: 10. 1109/ WIFS. 2012. 6412655].
  • 9Holub V, Fridrich J, Denemark T. Universal distortion function for steganography in an arbitrary domain [ J ]. EURASIP Journal on Information Security, 2014: 1-13. [DOI: 10. 1186/1687- 417X-2014-1 ].
  • 10Lyu S, Fraid H. Steganalysis using color wavelet statistics and one-class support vector machines [ C ]// SPIE Symposium on Electronic Imaging. San Jose, CA, Bellingham: SPIE Press, 2004:35-45. [DOI: 10. 1117/12.526012].

共引文献11

同被引文献9

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部