期刊文献+

一种复杂机电系统LE-SVDD异常监测方法 被引量:2

Laplacian Eigenmaps-Support Vector Domain Description Method for Complex Electromechanical System
下载PDF
导出
摘要 复杂机电系统生产过程监测数据具有明显的高维非线性和复杂分布特点,针对传统的方法难以满足复杂系统异常辨识的要求,提出一种拉普拉斯特征映射-支持向量数据描述(Laplacian eigenmaps-support vector domain description,简称LE-SVDD)的异常监测方法。由于高维特征空间中距离很近的点投影到低维空间后距离应该很近,因此改进的LE方法使用一个有权无向图来描述一个流行,用嵌入的方式找到高维数据的低维嵌入,从而能够发现高维数据内部的地位流行结构。通过标准的田纳西-伊斯曼过程(Tennessee Eastman process,简称TE过程)测试和训练数据进行仿真实验,给出了在非线性特征提取和不同时段异常辨识的准确结果。平均漏报率和误报率都比较低,分别为6.063,6和5.625,3.125,这表明LE-SVDD方法在状态监测中具有良好的非线性和高维数据处理能力,适用于工程系统的监测诊断。 The monitoring data of the complex electromechanical system has obvious high-dimensional nonlinear and complex distribution characteristics.In order to meet the requirements of complex system anomaly identification which are difficult to be satisfied by the traditional method,a kind of Laplacian eigenmaps-support vector domain description method(LE-SVDD)is proposed.On account of the fact that the points which are close in the high-dimensional feature space should also be close after being projected to the low-dimensional feature space,the improved LE method uses a weighted undirected graph to describe a popularity and find the low-dimensional embedment with an embedded method,thereby status popular structures can be found in the high-dimensional data.In the simulation experiments based on the standard Tennessee-Eastman process(TE process)test and training data,the accurate results of nonlinear feature extraction and anomaly identification at different time are given.Respectively,the average false negative rate and false alarm rate are 6.063,6and 5.625,3.125,which are relatively low.It shows that LE-SVDD method has excellent non-linearity and high-dimensional data processing capability in condition monitoring,which is suitable for the monitoring and diagnosis of engineering system.
出处 《振动.测试与诊断》 EI CSCD 北大核心 2017年第3期469-475,共7页 Journal of Vibration,Measurement & Diagnosis
基金 国家自然科学基金资助项目(51375375) 机械制造系统工程国家重点实验室(西安交通大学)开放课题资助项目(sklms2015009)
关键词 复杂机电系统 异常监测方法 特征提取 拉普拉斯特征映射-支持向量数据描述(LE-SVDD) 田纳西-伊斯曼(TE)过程 complex electromechanical systems anomaly detection method feature extraction Laplacian eigenmaps-support vector domain description method(LE-SVDD) Tennessee-Eastman proces
  • 相关文献

参考文献3

二级参考文献48

  • 1范玉刚,李平,宋执环.基于特征样本的KPCA在故障诊断中的应用[J].控制与决策,2005,20(12):1415-1418. 被引量:20
  • 2Hyvarinen A, Oja E.A fast fixed-point algorithm for independent component analysis. Neural Computation, 1997, 9 (7): 1483- 1492.
  • 3Lin Kuan Ming, Lin Chin Jen. A study on reduced support vector machine. IEEE Transactions on Neural Networks, 2003, 14 (6):1449 -1459.
  • 4Kim P J, Chang H J, Song D S. Fast support vector data description using K means clustering//Proceeding of the 4th International Symposium on Neural Networks. Nanjing, China, 2007 : 506-514.
  • 5Yan Liu, Bojan Cukic, Srikanth Gururajan. Decompose and combine--a fast training algorithm for SVDD. United States Institute of Peace Technical Report, V&V of Adaptive Systems [ EB/OL ]. http: //sarpresults. ivv. nasa. gov/ DownloadFile/35/19/Decompose G20 and %20Combine%20-G 20AG 20Fast% 20Training% 20Algorithm% 20for% goSVDD, pdf.
  • 6Jong Min Lee, ChangKyoo Yoo, Sang Wook Choi, Veter A Vanrolleghem, ln-Beum Lee. Nonlinear process monitoring using kernel principal component analysis. Chemical Engineering Science, 2004, 59 (1) : 223- 234.
  • 7Shao Jidong, Rong Gang. Nonlinear process monitoring based on maximum variance unfolding projections. Expert Systems with Applications, 2009, 36:11332 - 11340.
  • 8Zhang Z Y, Zha H Y. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment. Society for Industrial and Applied Mathematics Journal of Scientific Computing, 2004, 26 (1) : 313 338.
  • 9Tax D M J, Duin R P W. Support vector data description. Machine Learning, 2004, 54 (1) : 45- 66.
  • 10ZhaoYinggang(赵英刚) ChenQi(陈奇) HeQinming(何钦铭).仪器仪表学报,2006,27(6):798-800.

共引文献41

同被引文献20

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部