期刊文献+

基于HHT和RBF神经网络的串联故障电弧识别 被引量:4

Series Fault Arcs Identification Based on HHT and RBF Neural Network
下载PDF
导出
摘要 针对串联故障电弧的识别,提出一种基于HHT(Hilbert-Huang transform,希尔伯特-黄变换)和RBF(radial basis function,径向基函数)神经网络相结合的识别方法。通过对不同负载下正常电流和故障电流信号的EMD分解,得到一系列的IMF分量;提取相关IMF分量的能量熵作为RBF神经网络输入的特征向量,训练RBF神经网络。实验数据分析表明,经过训练的神经网络能够有效地识别串联故障电弧。 A recognition method based on I-IHT (Hilbert-Huang transform) and RBF (radial basis function) neural network is proposed for the identification of series fault arcs. A series of IMF components are obtained by decomposing the normal current and fault current signals under different loads. The energy entropy of the relevant IMF component is extracted as the eigenvector of the RBF neural network to train the RBF neural network. The experimental data show that the trained neural network can effectively identify the series fault arcs.
出处 《建筑电气》 2017年第7期45-49,共5页 Building Electricity
基金 公安部四川消防研究所基本科研业务费专项项目 项目名称电气火灾起火源智能消除装置及演示平台研制 项目编号20168807Z
关键词 电气火灾 串联故障电弧 HHT变换 固有模态函数 经验模态分解 能量熵 RBF神经网络 Gauss函数 electrical fire seriesHHTmodetransform intrinsic modal function decomposition energynetwork Gauss functionfault arc empiricalentropy RBF neural
  • 相关文献

参考文献7

二级参考文献78

共引文献282

同被引文献33

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部