期刊文献+

北京地铁客流密度自动检测技术研究 被引量:10

Research on Passenger Flow Density and Automatic Measurement Technology of Beijing Metro
下载PDF
导出
摘要 北京市轨道交通客流数量不断增加,为加强对轨道交通各类突发事件引起的客流拥堵情况的应急响应处理,北京市轨道交通指挥中心拟启动建设路网视频监控中心项目。针对北京市轨道交通的客流拥堵问题以及传统的客流密度监测手段,分析轨道交通客流拥堵的特点,结合路网视频监控中心建设的业务需求和初步设计,提出对客流拥堵情况进行监测和应对的优化方法及建议,为未来建设路网视频监控中心提供参考与支持。 With the increase of passenger for Beijing Rail Transit, Beijing Rail Transit Command Center shall develop the project of Network Video Monitoring Center to strengthen the emergency responses for passenger congestion caused by all kinds of sudden accidents. Aiming at the passenger congestion and the traditional monitoring method of the passenger flow density, this paper analyzes the features of rail transit congestion and combine the business requirements and primary design of the Network Video Monitoring Center construction. Then it proposes the optimizing method and suggestions for monitoring and dealing with the passenger congestion, providing the reference and support for Network Video Monitoring Center construction in the future.
作者 张月坤 ZHANG Yuekun(Beijing Rail Transit Railway Network Management Co Ltd, Beijing 100101, China)
出处 《中国铁路》 2017年第4期96-100,共5页 China Railway
关键词 轨道交通 客流拥堵密度监测 视频监控 回归模型 rail transit density monitoring of passenger congestion video monitoring regression model
  • 相关文献

参考文献1

二级参考文献14

  • 1王江涛,杨静宇.红外图像中人体实时检测研究[J].系统仿真学报,2007,19(19):4490-4494. 被引量:12
  • 2Suard F,Rakotomamonjy A,Bensrhair A,et al.Pedestrian Detection Using Infrared Images and Histograms of Oriented Gradients[C]//Proceedings of IEEE Intelligent Vehicles Symposium.Washington D.C.,USA:IEEE Press,2006:206-212.
  • 3Mohan A,Papageorgiou C,Poggio T.Example-based Object Detection in Images by Components[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23(4):349-361.
  • 4Dalal N,Triggs B.Histograms of Oriented Gradients for Human Detection[C]//Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.San Diego,USA:IEEE Press,2005:886-893.
  • 5Benenson R,Mathias M,Tuytelaars T,et al.Seeking the Strongest Rigid Detector[C]//Proceedings of CVPR’13.[S.l.]:IEEE Press,2013:3666-3673.
  • 6Wu B,Nevatia R.Detection of Multiple,Partially Occluded Humans in a Single Image by Bayesian Combination of Edgelet Part Detectors[C]//Proceedings of ICCV’05.[S.l.]:IEEE Press,2005:90-97.
  • 7Kim D S,Kim M.Histograms of Local Intensity Differences for Pedestrian Classification in Far-infrared Images[J].Electronics Letters,2013,49(4):258-260.
  • 8Fang Y,Yamada K,Niomiya Y,et al.A Shapeindependent Method for Pedestrian Detection with Farinfrared Images[J].IEEE Transactions on Vehicular Technology,2004,53(6):1679-1697.
  • 9Chang Shyang-Lih,Yang Fu-Tzu,Wu Wen-Po,et al.Nighttime Pedestrian Detection Using Thermal Imaging Based on HOG Feature[C]//Proceedings of2011International Conference on System Science and Engineering.Macao,China:[s.n.],2011:694-698.
  • 10Sabzmeydani P,Mori G.Detecting Pedestrians by Learning Shapelet Features[C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.Minneapolis,USA:IEEE Press,2007:1-8.

共引文献4

同被引文献67

引证文献10

二级引证文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部