期刊文献+

硬质合金刀具几何角度对高速铣削钛合金TC4切屑形态的影响 被引量:1

Study on effect of geometrical angle of cemented carbide tool on chip formation in high speed milling titanium alloy TC4
下载PDF
导出
摘要 为探讨高速铣削中刀具的几何角度对切屑形态的影响,采用不同的几何角度,进行钛合金TC4的高速铣削,以获得更好的加工表面质量。采用Advant Edge有限元分析软件,建立高速铣削钛合金TC4的有限元模型,在给定的切削条件下,针对不同的刀具前角和螺旋角,对钛合金TC4切削过程中的切屑形态进行仿真,分析刀具角度与切屑温度及形态的关系。并以相同的刀具几何角度和铣削参数进行了加工实验。结果表明:高速铣削条件下,切屑的温度高于工件和刀具的温度,切削热通过切屑散发,有利于切削;适当增加前角,切屑形态规则且均匀,表面质量较好。螺旋角在一定范围内增大,使切屑形态不规则,对加工产生不利影响。模拟与铣削实验的切屑形态具有相似性,可以为后续分析切屑的形态及形成过程提供依据。 This paper is focused on an investigation into the influence of the geometrical angle of the tool in the high speed milling on the chip morphology. The investigation is achieved by performing the high speed milling of the titanium alloy TC4 using the combination of simulation and experiment and using the different geometrical angle of the cemented carbide tool ; and examining the chip morphology to obtain better processing surface quality. The investigation also involves developing the finite element model of high speed milling titanium alloy TC4 using the AdvantEdge finite element analysis software; given the cutting conditions, simulating the chip formation of titanium alloy TC4 for different relief angle and helix angle of the tool and thereby analyzing the relationship among the tool angle, milling temperature, and chip morphology; and ultimately performing machining experiment using the same tool geometric angle and milling parameters. The results demonstrate that, given the condition of high speed milling, the chip has a higher temperature than the workpiece and the cutting tool and enables the cutting heat dissipation, aiding cutting process; an appropriate increase in the rake angle gives a regular and uniform chip formation and a better surface quality; an increase in the helix angle in a certain range tends to leave the chip shape irregular, adversely affecting the process; and there occurs a similarity between the chip formation gained from the simulation and that of the milling experiment. The study may provide a basis for the analysis of the chip formation and forming process.
作者 冯明军 Feng Mingjun(School of Mechanical Engineering, Heilongjiang University of Science & Technology, Harbin 150022, China)
出处 《黑龙江科技大学学报》 CAS 2017年第2期165-167,191,共4页 Journal of Heilongjiang University of Science And Technology
基金 黑龙江省自然科学基金项目(E201328 QC2012C029) 黑龙江省教育厅科学技术研究项目(12541691)
关键词 高速铣削 铣削温度 切屑形态 刀具几何角度 有限元分析 high speed milling milling temperature chip formation tool geometry angle finite element analysis
  • 相关文献

参考文献1

二级参考文献8

  • 1Shi Jing, Liu C. Richard. The hffluence of Material Models on Finite Element Simulation of Machining[J]. Journal of Manufacturing Science and Engineering,2004,126(4) :849-858.
  • 2Johnson G. R, W.H. Cook. A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures[C]. Proceedings of the 7th International Symposium on Ballistics, 1983:541-547.
  • 3A.G.. Mamalis, M. Horvath, A.S. Branis, et al. Finite Element Simulation of Chip Formation in On.hogonal Metal Cutting. Journal of Materials Processing Technology, 2001,110( 1 ) : 19-27.
  • 4Lin Z.C. , Lin S, Y. A Coupled Finite Element Model of Themlo-ElasticPlastic Large Deformatio-n for Orthogonal Cutting[J]. Journal of Engineering Materials and Technology, 1992,114(2) :218227.
  • 5Guo Y. B., Liu C.R. 3D FEA Modeling of Hard Turning[J]. Journal of Manufacturing Science and Engineering, 2002,124(2) : 189-200.
  • 6J. M. Huang, J. T. Black. An Evaluation of Chip Separation Criteria for the FEM Simulation of Machining[ J]. Journal of Manufacturing Science and Engineering, 1996,118(4) :545-555.
  • 7Tamara Novakov. Computational Analysis of Micmmachining Ti6Al4V Titanium Alloy[D]. Purdue University,2010:65-66.
  • 8叶玉刚,尹燕.TC4合金切削有限元模拟动态本构模型的建立[J].兵器材料科学与工程,2009,32(6):35-39. 被引量:10

共引文献16

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部