摘要
基于Gray映射和Ding-广义分圆理论,在Z_4上构造了一类周期为pq的四元广义分圆序列。在有限域F_r(r≥5为奇素数)上研究了新序列对应的傅里叶谱序列,并依据傅里叶谱序列的重量确定了新序列的线性复杂度。结果表明,新序列具有良好的线性复杂度性质,能够抗击B-M算法的攻击,是密码学意义上性质良好的伪随机序列。
Based on the theory of Gray mapping and Ding-generalized cyclotomic,a new class of quaternary sequence over Z_4 with period pq was constructed firstly.Then we determined the corresponding Fourier spectral sequence of the new sequence over the finite field F_r(r≥5,prime).Finally,we obtained the linear complexity of the new sequence from the weights of its Fourier spectral sequence.Results show that the sequence has large linear complexity and can resist the attack by B-M algorithm.It's a good pseudorandom sequence from the viewpoint of cryptography.
出处
《计算机科学》
CSCD
北大核心
2017年第6期174-176,188,共4页
Computer Science
基金
国家自然科学基金资助项目(61202395
61462077
61562077)
教育部"新世纪优秀人才计划"基金资助项目(NCET-12-0620)资助
关键词
密码学
有限域
傅里叶谱序列
四元序列
线性复杂度
B-M算法
Cryptography
Finite field
Fourier spectral sequence
Quaternary sequence
Linear complexity
B-M algorithm