期刊文献+

基于改进布谷鸟优化的模糊聚类图像分割 被引量:6

Fuzzy Clustering Image Segmentation Algorithm Based on Improved Cuckoo Search
下载PDF
导出
摘要 模糊C均值聚类算法(FCM)是一种应用非常广泛的聚类算法,但是它受初始聚类中心影响较大,容易陷入局部最优。在标准布谷鸟算法(CS)的基础上提出改进布谷鸟优化算法(ICS),将发现概率P由固定值转变成随迭代次数逐渐减小的变量,这样不仅可以提高搜索种群的质量,而且保证了算法的收敛。因此,可以将改进布谷鸟优化算法用于FCM算法聚类中心生成的过程(ICS_FCM),从而有效地避免FCM陷入局部最优。改进的算法具有良好的聚类效果和运行速度。实现基于改进布谷鸟优化的FCM图像分割,并与基于模拟退火的FCM算法(SA_FCM)进行对比。由实验结果可知,该算法(ICS_FCM)不仅取得了较好的分割效果,效率上也有明显的提高。 Fuzzy C-means clustering algorithm(FCM)is a widely used clustering algorithm,however,it is influenced by the initial cluster centers,and is easy to fall into local optima.In this article,we proposed an improved cuckoo search(ICS)based on the standard cuckoo algorithm(CS),which changes the detection probability P with a constant value into a variable number of iterations decreases.This will not only improve the quality of the population,but also ensure the convergence of the algorithm.Therefore,we can use the improved cuckoo search algorithm to generate the FCM clustering centers and avoid FCM falling into local optima effectively.The proposed algorithm has better clustering effect and faster running speed.In this article,ICS_FCM was used in fuzzy clustering image segmentation,and compared with SA_FCM.The experimental results show that ICS_FCM can not only achieve better segmentation results,but also improved efficiency significantly.
出处 《计算机科学》 CSCD 北大核心 2017年第6期278-282,共5页 Computer Science
基金 国家自然科学基金项目(61300239 61572261) 中国博士后科学基金资助项目(2014M551635) 江苏省博士后科研资助计划项目(1302085B) 江苏省政府留学基金(JS-2014-085)资助
关键词 图像分割 改进布谷鸟优化算法 模糊C均值聚类 Image segmentation Improved cuckoo search algorithm Fuzzy C-means clustering
  • 相关文献

参考文献2

二级参考文献43

  • 1韦苗苗,江铭炎.基于粒子群优化算法的多阈值图像分割[J].山东大学学报(工学版),2005,35(6):118-121. 被引量:34
  • 2Pal N R, Pal S K. A Review on Image Segmentation Tech- niques[J]. Pattern Recognition, 1993, 26(9): 1277-1294.
  • 3Passino K M. Biomimicry of Bacterial Foraging for Distri- buted Optimization and Control[J]. IEEE Control Systems Magazine, 2002, 22(3): 52-67.
  • 4Yang Xingshe, Deb S. Cuckoo Search via Levy Flights[C]// Proc. of World Congress on Nature & Biologically Inspired Computing. Coimbatore, India: [s. n.], 2009.
  • 5Yang Xingshe, Deb S. Engineering Optimisation by Cuckoo Search[J]. International Journal Mathematical Modelling and Numerical Optimisation, 2010, 1(4): 330-343.
  • 6Zheng Hongqing, Zhou Yongquan. A Novel Cuckoo Search Optimization Algorithm Based on Gauss Distribution[J]. Journal of Computational Information Systems, 2012, 8(10): 4193-4200.
  • 7Dhivya M, Sundarambal M. Cuckoo Search for Data Ga- thering in Wireless Sensor Networks[J]. International Journal of Mobile Communications, 2011, 9(6): 642-656.
  • 8Srivastava P R, Chis M, Deb S, et al. An Efficient Optimi- zation Algorithm for Structural Software Testing[J]. Inter- national Journal of Artificial Intelligence, 2012, 9(S12): 68-77.
  • 9Kumar A, Chakarverty S. Design Optimization for Reliable Embedded System Using Cuckoo Search[C]//Proc. of the 3rd International Conference on Electronics Computer Technology. Kanyakumari, India: [s. n.], 2011.
  • 10Payne R B, Sorenson M D, Klitz K. The Cuckoos[M]. Oxford, UK: Oxford University Press, 2005.

共引文献27

同被引文献49

引证文献6

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部