期刊文献+

一种基于权重属性熵的分类匿名算法 被引量:19

Classification Anonymity Algorithm Based on Weight Attributes Entropy
下载PDF
导出
摘要 为了在高效地保护数据隐私不被泄露的同时保证数据效用,提出了一种基于权重属性熵的分类匿名方法(Weight-properties Entropy for Classification Anonymous,WECA)。该方法在数据分类挖掘的特定应用背景下,通过信息熵的概念来计算数据集中不同准标识符属性对敏感属性的分类重要程度,选取分类权重属性熵比率最高的准标识符属性对分类树进行有利的划分,同时构建了分类匿名信息损失度量,在更好地保护隐私数据的前提下确保了数据分类效用。最后,在标准数据集上的实验结果表明,该算法在保证较少的匿名损失的同时具有较高的分类精度,提高了数据可用性。 In order to efficiently protect data privacy being not leaked,which have high availability,a classification anonymous method based on weight attributes entropy(WECA)was proposed.The method builds on application-specific background of data classification mining,and calculates the classification importance of different standard identifier to sensitive attribute by the concept of information entropy in the data set,which selects the highest ratio of weight attributes entropy in classification quasi-identifier attributes to favorably divide the classification tree.The method also constructs the anonymous information loss measures of classification,which ensures the utility of classification on the premise of protecting privacy data.Finally,the experimental results on the standard data set show that the algorithm has fewer anonymous losses and higher classification accuracy,improving data availability.
出处 《计算机科学》 CSCD 北大核心 2017年第7期42-46,共5页 Computer Science
基金 国家自然科学基金项目(61303232 61540049) 贵州省基础研究重大项目(黔科合JZ字[2014]2001-21) 贵州大学研究生创新基金(院项目) 河南省高等学校重点科研项目(16A520025) 许昌学院优秀青年骨干教师资助项目资助
关键词 隐私保护 分类匿名 权重属性熵 分类精度 Privacy protection Classification anonymous Weight attributes entropy Classification accuracy
  • 相关文献

参考文献7

二级参考文献170

  • 1姜传贤,孙星明,易叶青,杨恒伏.基于JADE算法的数据库公开水印算法的研究[J].系统仿真学报,2006,18(7):1781-1784. 被引量:9
  • 2彭京,唐常杰,程温泉,石葆梅,乔少杰.一种基于层次距离计算的聚类算法[J].计算机学报,2007,30(5):786-795. 被引量:11
  • 3AGRAWAL R,SRIKANT R.Privacy-preserving data mining[C] //Proc of ACM SIGMOD on Management of Data.2000:439-450.
  • 4LINDELL Y,PINKAS B.Privacy preserving data mining[J].Journal of Cryptology,2002(15):177-206.
  • 5QUINLAN R J.C4.5:Programs for machine learning[M].San Mateo,CA:Morgan Kaufmann Publisher,1993.
  • 6YAO A C.Protocols for secure computations[C] //Proc of the 23rd Annual IEEE Symposium on Foundations of Computer Science.1982.
  • 7DU Wen-liang,ZHAN Zhi-jun.Building decision tree classifier on private data[C] //Proc of IEEE International Conference on Data Mining Workshop on Privacy,Security and Data Mining.Maebashi City:Australian Computer Society,Inc,2002.
  • 8PINKAS B,LABS H P.Cryptographic techniques for privacy preserving data mining[J].SIGKDD Explorations,2002,4(2):12-19.
  • 9UCI.Machine learning repository[EB/OL].http://archive.ics.uci.edu/ml/datasets.html.
  • 10Herman T Tavani. Information privacy, data mining, and the in- temet [J]. Ethics and Information Technology, 1999,1 (2) : 137 - 145.

共引文献992

同被引文献123

引证文献19

二级引证文献74

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部