期刊文献+

阵元缺损下的波达方向估计算法 被引量:3

A Novel DOA Estimation Algorithm in Conditions of Array Elements Deficiency
下载PDF
导出
摘要 为解决在均匀线阵中阵元降采样或其他因素引起的阵元损坏导致角度估计精度下降的问题,该文对缺损的采样数据矩阵进行Hankel矩阵变换,利用Hankel矩阵变换的性质以及矩阵填充理论,将不满足矩阵填充理论的接收数据矩阵变换为适用于矩阵填充理论的数据矩阵,通过不定增广拉格朗日乘子法精确重构出完整的接收数据矩阵,实现了精确的波达方向估计。仿真实验验证了该方法在均匀线阵阵元出现损毁的情况下,仍能实现对角度的精确估计,同时给出了算法随阵元缺损程度变化的性能变化趋势。 In order to solve the accuracy decrease in angle estimation caused by the undersampling or the damage of the array elements in the uniform linear array, the matrix completion theory and Hankel matrix characteristic are exploited to transform the undersampling data matrix into a two-fold Hankel matrix. The completed data matrix is reconstructed by inexact augmented Lagrange multiplier method and the accurate angle estimation is achieved. Simulation results demonstrate that the proposed method is still effective with damaged and missing elements and show the tendency of the proposed method versus the different elements damage of the uniform linear array.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2017年第4期501-504,512,共5页 Journal of University of Electronic Science and Technology of China
基金 国家自然科学基金(61372033 61501501)
关键词 矩阵填充 Hankel钜阵 不定增广拉格朗日乘子法 波达方向估计 direction of arrival estimation Hankel matrix inexact augmented Lagrange multipliermethod matrix completion
  • 相关文献

参考文献4

二级参考文献36

  • 1Larsson E G, Stoica P. High-resolution Direction Finding: the Missing Data Case[J]. IEEE Transactions on Signal Processing, 2001, 49(5): 950-958.
  • 2Vigneshwaran S, Sundararajan N, Saratchandran P. Direction of Arrival (DOA) Estimation under Array Sensor Failures Using a Minimal Resource Allocation Neural Network[J]. IEEE Transactions on Antennas and Propagation, 2007, 55 (2) : 334-343.
  • 3Candes E J, Recht B. Exact Matrix Completion via Conves Optimization [J]. Foundations of Computational Mathematics, 2009, 9(6): 717-772.
  • 4Candes E J, Plan Y. Matrix Completion with Noise[J]. Proceedings of the IEEE, 2010, 98(6) : 925-936.
  • 5Candes E J, Tao T. The Power of Convex Relaxation: Near-optimal Matrix Completion [J]. IEEE Transactions on Information Theory, 2010, 56(5): 2053-2080.
  • 6Yan H, Wang R, Li F. Ground Moving Target Extraction in a Multichannel Wide-area Surveillance SAR/GMTI System via the Relaxed PCP [J]. IEEE Transactions on Geoscience Remote Sensing, 2013, 10(3) : 617-621. http://arxiv.org/abs/1009. 5055.
  • 7Yerriswamy T, Jagadeesha S N. Fault Tolerant Matrix Pencil Method for Direction of Arrival Estimation [J]. International Journal of Signal and Image Processing, 2011, 9.(3) : 55-67.
  • 8Weng Z, Wang X. Low-rank Matrix Completion for Array Signal Processing[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing. Piscataway: IEEE, 2012: 2697-2700.
  • 9Candes E J, Li X, Ma Y. Robust Principal Component Analysis[J]. Journal of the ACM, 2011, 58(3) : 11.
  • 10Lin Z, Chen M, Ma Y. The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-rank MatricesR. Technical Report, UIUC-ENG-09-2215, 2009.

共引文献22

同被引文献2

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部