摘要
为解决在均匀线阵中阵元降采样或其他因素引起的阵元损坏导致角度估计精度下降的问题,该文对缺损的采样数据矩阵进行Hankel矩阵变换,利用Hankel矩阵变换的性质以及矩阵填充理论,将不满足矩阵填充理论的接收数据矩阵变换为适用于矩阵填充理论的数据矩阵,通过不定增广拉格朗日乘子法精确重构出完整的接收数据矩阵,实现了精确的波达方向估计。仿真实验验证了该方法在均匀线阵阵元出现损毁的情况下,仍能实现对角度的精确估计,同时给出了算法随阵元缺损程度变化的性能变化趋势。
In order to solve the accuracy decrease in angle estimation caused by the undersampling or the damage of the array elements in the uniform linear array, the matrix completion theory and Hankel matrix characteristic are exploited to transform the undersampling data matrix into a two-fold Hankel matrix. The completed data matrix is reconstructed by inexact augmented Lagrange multiplier method and the accurate angle estimation is achieved. Simulation results demonstrate that the proposed method is still effective with damaged and missing elements and show the tendency of the proposed method versus the different elements damage of the uniform linear array.
出处
《电子科技大学学报》
EI
CAS
CSCD
北大核心
2017年第4期501-504,512,共5页
Journal of University of Electronic Science and Technology of China
基金
国家自然科学基金(61372033
61501501)