期刊文献+

Varian RapidARC直线加速器6 MeV-X线虚拟源模型的建立 被引量:4

Establishment of a virtual source model of Varian Rapid ARC linear accelerator with 6 MeVX-ray
下载PDF
导出
摘要 目的:减少直线加速器commission过程的工作量,对加速器出束信息进行建模,使用蒙特卡罗方法进行剂量计算,并验证模型的准确性。方法:将光子束区分为初始光子束和散射光子束,分别用数学公式描述其能量和方向,建立虚拟源模型,使用蒙特卡罗方法计算在水中的剂量分布,与水箱中的测量数据比较。使用源模型计算病例计划,与商用TPS计算结果比较。结果:计算得到的PDD误差基本在1.0%以内,OAR误差在2.0%以内。在1例前列腺病例计划中,本方法计算得到的DVH曲线与不同TPS计算得到的结果基本一致。结论:本虚拟源模型方法可以很好地模拟直线加速器的出束信息,计算单个病例时间在40 s量级,可以实现病人治疗前实时的剂量验证,且有用于直线加速器自动commission过程的潜力。 Objective To model the accelerator beam information for reducing the workload of linear accelerator commissioning process,and to verify the accuracy of established model based on the dose calculation of Monte Carlo method.Methods The energy and direction of the photon beam which was divided into primary photon beam and scattered photon beam were described with mathematical formula in order to establish the virtual source model.The dose distribution in water calculated with Monte Carlo method was compared with the measurement data in the water tank,and the actual plan calculated using source model was compared with the results of commercial treatment planning system(TPS).Results The errors of percent depth dose and off-axis ratio curves were basically within 1.0% and within 2.0%,respectively.In a case of prostate plan,the dose-volume histogram curve calculated by the proposed method was basically the same as that calculated by different TPS.Conclusion The virtual source model method which can represent the beam information of linear accelerator and calculate the plan for a single case within 40 seconds realizes the real-time dose verification before treatment and has potential in the automatic commission process of linear accelerator.
出处 《中国医学物理学杂志》 CSCD 2017年第6期561-569,共9页 Chinese Journal of Medical Physics
基金 国家自然科学基金(11275105)
关键词 直线加速器 虚拟源模型 蒙特卡罗 剂量验证 COMMISSION linear accelerator virtual source model Monte Carlo dose verification commission
  • 相关文献

参考文献1

二级参考文献10

  • 1胡选民.肿瘤放射治疗物理学[M].北京:原子能出版社,1999:9.
  • 2Andrews DW, Bednarz G, Evans JJ, et al. A review of 3 current radiosurgery systems[J]. Surg Neurol, 2006, 66(6): 559-564.
  • 3Siddon RL. Prism representation: A 3D ray-tracing algorithm for radiotherapy applications[J]. Phys Med Biol, 1985, 30(8): 817-824.
  • 4Dieterich S, Pawlicki T. Cyberknife image-guided delivery and qua- Uty assurance[J]. Int J Radiat Oncol Biol Phys, 2008, 71(l): 126- 130.
  • 5Townson RW, Jia X, Tian Z, et al. GPU-based Monte Carlo radio- therapy dose calculation using phase-space sources[J]. Phys Med Biol, 2013, 58(12): 4341-4356.
  • 6Kawrakow I, Rogers DW. The EGSnrc code system: Monte Carlo simulation of electron and photon transport, NRC Report PIRS 701 [R]. Ottawa: NRC, 2000.
  • 7Rogers DW, Waiters B, Kawrakow I. BEAMUrc users manual, NRC Report PIRS 509[R]. Ottawa: NRC, 2001.
  • 8Waiters B, Kawrakow I, Rogers DW. DOSXYZnrc users manual, NRC Report PIRS, 794[R]. Ottawa: NRC, 2005.
  • 9巩汉顺,鞠忠建,徐寿平,王连元,黄永杰,王金媛,杜镭,解传滨,葛瑞刚,杨涛.G4 CyberKnife——全新式立体定向放疗设备及其临床应用[J].医疗卫生装备,2013,34(4):127-129. 被引量:22
  • 10徐慧军,李玉,张素静,杨晓,张军华.G4射波刀两年质量保证检测结果的回顾与评价[J].中国医学物理学杂志,2013,30(3):4097-4099. 被引量:8

共引文献2

同被引文献9

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部