期刊文献+

颗粒表面吸附层对纳米流体导热系数贡献的分子动力学研究 被引量:5

Molecular Dynamics Study of Contribution of the Particle Surface Absorption Layer to the Thermal Conductivity of Nanofluids
原文传递
导出
摘要 本文采用平衡分子动力学方法研究了纳米流体中固体颗粒周围的吸附层厚度及结构,并通过Green-Kubo原理计算了吸附层内导热系数的分布。研究表明,纳米颗粒周围存在0.5 nm厚的吸附层,层内原子数密度提高了50%~60%,导热系数提高了200%~300%。分析发现,吸附层导热系数的提高是由于原子数密度及吸附层内原子排列有序程度的提高引起的。该研究结果有望为建立合理的预测纳米流体的导热系数模型提供关键参数及理论指导。 In this article we studied the thickness and structure of absorption layer around nanoparticle and derived the thermal conductivity distribution based on the principle of Green-Kubo by equilibrium molecular dynamics simulation.The results showed that there is a 0.5-nm-thickness absorption layer with 50%-60%enhancement on atom number density and 200%-300%enhancement on thermal conductivity.It was found after analysis that the enhancement of thermal conductivity(TCE) is the result of both the enhancement of number density and the more ordered alignment of atoms within the absorption layer.Our work is expected to provide critical parameters for the establishment of the mathematical model for prediction of the thermal conductivity of various nanofluids.
作者 王新 敬登伟
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2017年第7期1459-1465,共7页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.51476129)
关键词 纳米流体 吸附层 导热系数 分子动力学 nanofluid absorption layer thermal conductivity molecular dynamics
  • 相关文献

参考文献1

二级参考文献12

  • 1毕胜山,史琳.纳米颗粒在制冷剂中的分散特性研究[J].工程热物理学报,2007,28(2):185-188. 被引量:11
  • 2U S Choi. Enhancing Thermal Conductivity of Fluids with Nanoparticles [C]//Developments and Applications of Non-Newtonian Flows. ASME, NY, 1995:90-105.
  • 3WANG X W, XU X F, Choi S U S. Thermal Conductivity of Nanoparticle-Fluid Mixture [J]. Journal of Thermophysics and Heat Transfer, 1999, 13(4): 474-480.
  • 4Eastman J A, Choi S U S, Li S, et al. Anomalously Increased Effective Thermal Conductivities of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles [J]. Applied Physics Letters, 2001, 78(6): 718-720.
  • 5WANG Ruixiang, et al. A Refrigerating System Using HFC134a and Mineral Lubricant Appended with N-TiO2(R) as Working Fluids [C]//Proceedings of the 4^th International Symposium on HVAC. Beijing, 2003: 888- 892.
  • 6Chang H, et al. Temperature Effect on the Stability of CuO Nanofluids Based on Measured Particle Distribution [J]. Key Engineering Materials, 2005, 295-296:51-56.
  • 7Donggeun Lee, et al. A New Parameter to Control Heat Transport in Nanofluids: Surface Charge State of the Particle in Suspension [J]. J. Phys. Chem. B, 2006, 110: 4323-4328.
  • 8LI X F, ZHU D S, WANG X J. Evaluation on Dispersion Behavior of the Aqueous Copper Nano-Suspensions [J]. Journal of Colloid and Interface Science, 2007, 310(2): 456-463.
  • 9M P Allen, D J Tildesley. Computer Simulation of Liquids [M]. Oxford: Clarendon Press, 1987.
  • 10LI Ling, ZHANG Yuwen, MA Hongbin, et al. An Investigation of Molecular Layering at the Liquid-Solid Interface in Nanofluids by Molecular Dynamics Simulation [J]. Physics Letters A, 2008, 372:4541-4544.

共引文献8

同被引文献20

引证文献5

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部