期刊文献+

几何参数对紧凑涡轮过渡段内部流动机理影响研究 被引量:2

Flow and Control Mechanisms in Aggressivelnter-Turbine Ducts
原文传递
导出
摘要 本文深入探讨了定常来流条件下过渡段内部流动机理和损失机制。通过保持过渡段长高比、雷诺数和进口旋流不变,借助实验和数值模拟方法,系统地研究了过渡段中位角和出口面积对其内部流动及气动性能影响。研究发现,过渡段内部流场结构主要以对涡及轮毂和机匣区域附面层分离为主。过渡段来流尾迹、中位角及进出口面积比是影响过渡段内部流动损失的三个主要因素。其中,中位角决定了机匣第一弯逆压梯度强度,面积比主要控制第二弯静压升,上游尾迹是诱发机匣侧流动分离的主要诱因。在大中位角情况下,机匣第一弯的流动分离更严重,分离明显提前。在大面积比情况下,机匣侧不仅出现由上游尾迹堆积产生的流动分离,还会出现机匣附面层自身二维分离。随着过渡段的中位角和面积比增大,损失急剧增加。 The present workis aimed at providing detailed understanding of the flow physics and loss mechanisms in four different ITD geometries.A systematic experimental and computational study was carried out for varying duct mean rise angles and outlet-to-inlet area ratio while keeping the duct length-to-inlet height ratio,Reynolds number and inlet swirl constant in all four geometries.The flow structures within the ITDs were found to be dominated by the counter-rotating vortices and boundary layer separation in both the casing and hub regions.The duct mean rise angle determined the severity of adverse pressure gradient in the casing's first bend whereas the duct area ratio mainly governed the second bend's static pressure rise.The combination of upstream wake flow and the first bend's adverse pressure gradient caused the boundary layer to separate and intensify the strength of counter-rotating vortices.At high mean rise angle,the separation became stronger at the casing's first bend and moved farther upstream.At high area ratios,a 2-D separation appeared on the casing.Pressure loss penalties increased significantly with increasing duct mean rise angle and area ratio.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2017年第7期1539-1548,共10页 Journal of Engineering Thermophysics
基金 国家自然科学基金(No.51476166)
关键词 涡轮过渡段 紧凑 流动机理 分离 损失 inter-turbine ducts aggressive flow physics separation loss
  • 相关文献

参考文献4

二级参考文献17

  • 1唐洪飞,黄洪雁,韩万金.大子午扩张涡轮过渡段的子午型线[J].推进技术,2009,30(4):439-445. 被引量:22
  • 2张秋鸿.涡轮大扩张过渡段的流动分离与控制数值研究[J].汽轮机技术,2006,48(4):272-274. 被引量:5
  • 3http://www.pr.afrl.af.mil/division/prt/ihptet,ihptet.html.
  • 42002 Turbine Engine Technology brochure[DB/OL]. [2009-05-06]. http://www.pr.afrl.af.mil/division/prt/ vaate/vaate.html.
  • 5Duta M C, Shahpar S, and Giles M B. Turbomachinery design optimization using automatic differentiated adjoint code [R]. ASME Paper, GT2007-28329, 2007.
  • 6Hiroyuki Kawagisi, Kazuhiko Kudo. Development of Global Optimization Method for Design of Turbine Stages [R]. ASME GT2005-68290, 2005.
  • 7朴龙贤.中档功率燃气轮机涡轮过渡段原始流道、承力支板结构图[R].606所,2007.
  • 8朴龙贤.中档功率燃气轮机燃气涡轮出口参数[R].606所,2007.
  • 9NUMECA International. FINETM User Manual Version 6.2-b [M]. Brussel s, Belgium: NUMECA International, 2004.
  • 10Leach K,Thulin R.Energy Efficient Engine-Turbine Transition Duct Model Technology Report[R].NASA CR-167996,Aug.1982.

共引文献46

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部