期刊文献+

加权动态SVDD在非线性过程监测中的应用研究 被引量:2

Application of Weighted Dynamic SVDD in Nonlinear Process Monitoring
下载PDF
导出
摘要 由于化工过程的复杂性,数据往往存在动态以及序列之间具有相关性特点,传统的支持向量数据描述(Support Vector Data Description,SVDD)方法,很难保证故障监测的准确性和实时性,提出一种基于加权的动态SVDD(WDSVDD)在线实时故障监测方法,引入动态方法,考虑了数据之间的序列相关性,利用加权的方法把有用的信息突出显示,利用SVDD方法建立模型,实现了在线实时故障监测。该方法不仅克服了过程数据非高斯、非线性特性对故障监测带来的影响,并且考虑了数据的动态特性和序列之间的关系,通过在数值仿真和TE过程实例中的应用验证了方法的有效性。 Due to the complexity of the chemical process, the data are often characterized by dynamics and correlation between sequences. Traditional support vector data description(SVDD) methods are difficult to guarantee real-time monitoring online. A Weighted-Dynamic-SVDD(WDSVDD) method was proposed to monitor fault in real time online. The dynamic method was introduced, and the correlation between the data was considered. The weighted information was used to highlight the useful information. The model was established by using SVDD method, and the online real-time fault monitoring was realized. The method not only overcomes the adverse effect of non-Gaussian and nonlinearity, but also considers dynamic characteristics and correlation between sequences of the processing data. Applications in the numerical simulation and TE process instance verify the effectiveness of the proposed method.
出处 《系统仿真学报》 CAS CSCD 北大核心 2017年第7期1506-1513,共8页 Journal of System Simulation
基金 国家自然科学基金(61490701 61174119) 辽宁省教育厅重点实验室基础研究(LZ2015059) 辽宁省自然科学基金(2015020164)
关键词 故障监测 动态 支持向量数据描述 化工过程 faulty monitoring dynamic SVDD(support vector data description) chemical process
  • 相关文献

参考文献6

二级参考文献54

  • 1刘世成,王海清,李平.青霉素生产过程的在线统计监测与产品质量控制[J].计算机与应用化学,2006,23(3):227-232. 被引量:9
  • 2熊伟丽,肖应旺,徐保国.基于特征子空间的滑动窗PCA在批过程故障诊断中的应用[J].计算机与应用化学,2006,23(4):303-306. 被引量:4
  • 3刘毅,王海清.Pensim仿真平台在青霉素发酵过程的应用研究[J].系统仿真学报,2006,18(12):3524-3527. 被引量:44
  • 4JACKSON J E. A User's Guide to Principal Components[M]. New York: Wiley, 1991.
  • 5KOURTI T, MACGREGOR J F. Process analysis, monitoring and diagnosis, using multivariate projection methods[J]. Chemometrics and Intelligent Laboratory Systems, 1995, 28(19): 3 - 21.
  • 6WANG X Z. Data Mining and Knowledge Discovery for Process Monitoring and Control[M]. London: Springer, 1999.
  • 7NOMIKOS P, MACGREGOR J F. Monitoring batch processes using multiway principal component analysis[J]. American Institute of Chemical Engineers Journal, 1994, 40(8): 1361 - 1375.
  • 8NOMIKO$ P, MACGREGOR J E Multi-way partial least squares in monitoring batch processes[J]. Chemometrics and Intelligent LabomtorySystems, 1995, 30(1): 97- 108.
  • 9NOMIKOS P, MACGREGOR J E Multivariate SPC charts for monitoring batch processes[J]. Technometrics, 1995, 37( 1 ): 41 - 59.
  • 10KOSANOVICH K A, PIOVOSO M J, DAHL K S. Multi-way PCA applied to an industrial batch process[C] //Proceedings of American Control Conference. Baltimore, USA: IEEE, 1994:1294 - 1298.

共引文献109

同被引文献21

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部