期刊文献+

大数据时代的计算政治学研究 被引量:5

Computational Political Science in the Era of Big Data
下载PDF
导出
摘要 政治学研究一直是社会科学领域的热点研究方向。政治理论、比较政治、公共政策和国际政治等,这些经典的政治学研究课题吸引了大批的政治学学者。从传统政治学研究中的道德哲学和法理主义,到行为主义政治学研究中的科学方法论和定量分析,再到一些自然科学工作者开始涉足政治学领域,政治学的研究方法一直在发展与演变。该文在对传统政治学研究的方法进行简要总结的基础上,针对互联网时代,"大数据"驱动下的政治学研究,阐述了计算政治学的起源、定义及其主要的研究内容和方法,论述了目前研究的热点政治倾向性及政治观点识别、冲突观点检测、选举预测和分析可视化的研究进展。 The study of politics has been a hot research spot in the field of social science, such as political theory, comparative politics, public policy, and international politics. From the moral philosophy and legal theory in the traditional politics, to the scientific methodology and quantitative analysis in behavioristic politics, further to the involvement of natural science researchers, the research methods in politics have been developing and evolving. After a brief summary of previous methods in political science research, this paper discusses the origin, definition and development of computational political science at the age of the Internet, especially in the era of big data. It reviews the progress of political orientation, opinion recognition, conflict point detection, election prediction and political analysis visualization.
出处 《中文信息学报》 CSCD 北大核心 2017年第3期9-16,共8页 Journal of Chinese Information Processing
基金 国家自然科学基金(60673039 60973068) 国家高技术研究发展计划(863计划)(2006AA01Z151)
关键词 计算政治学 计算社会科学 大数据 研究方法 computational political science computational social science big data research methodology
  • 相关文献

参考文献4

二级参考文献21

  • 1陈炯,张永奎.一种基于词聚类的中文文本主题抽取方法[J].计算机应用,2005,25(4):754-756. 被引量:17
  • 2谭松波.中文情感挖掘语料--chnsenticorp[EB/OL].[2010-05-01].http://www.searchforum.org.cn/tansongbo/corpus-senti.htm.
  • 3DAHL,Robert A. The Behavioral Approach in Political Science: Epitaph for a Monument to a Successful Protest[A]. EULAU,Heinz. Behavioralism in Political Science[C]. New York: Atherton Press Incorporated, 1969.
  • 4Blitzer J, McDonald R, Pereira F. Domain Adaptation with Struc- tural Correspondence Learning//Proc of the Conference on Empiri- cal Methods in Natural Language Processing. Sydney, Australia, 2006:120-128.
  • 5Pan S J, Ni Xiaochuan, Sun Jiantao, et al. Cross-Domain Sentiment Classification via Spectral Feature Alignment /! Proc of the 19th International Conference on World Wide Web. Raleigh, USA, 2010 : 751-760.
  • 6Meng Jina, Lin Hongfei, Li Yanpeng. Knowledge Transfer Based on Feature Representation Mapping for Text Classification. Expert Sys- tems with Applications, 2011, 38(8) : 10562-10567.
  • 7Wu Qiong, Tan Songbo, Zhai Haijun, et al. SentiRank: Cross-Domain Graph Ranking for Sentiment Classification // Proc of the IEEE/ WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technologies. Milan, Italy, 2009 : 309-314.
  • 8Chen Wei, Zhou Jingyu. A Text Classifier with Domain Adaptation for Sentiment Classification/! Cheng P J, Kan M Y, Lam W, eds. Information Retrieval Technology: Lecture Notes in Computer Sci- ence. Berlin, Germany: Springer-Verlag, 2010:61-72.
  • 9Jeh G, Widom J. SimRank: A Measure of Structural-Context Simi- larity//Proc of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Edmonton, Canada, 2002: 538 -543.
  • 10Ma Yunlong, Lin Hongfei, Jin Song. A Revised Simrank Approach for Query Expansion//Cheng P J, Kan M Y, Lam W, eds. Infor- mation Retrieval Technology: Lecture Notes in Computer Science. Berlin, Germany : Springer-Verlag, 2010 : 564-575.

共引文献83

引证文献5

二级引证文献26

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部