期刊文献+

在线评论质量有用特征识别:基于GBDT特征贡献度方法 被引量:14

Helpful Features Identification of Online Reviews Quality Based on GBDT Feature Contribution
下载PDF
导出
摘要 面对海量的在线评论,有用特征识别有助于消费者选择高质量的评论,为合理决策提供支持。该文基于信息采纳模型理论,在数码相机和手机数据集上提取了四类影响评论质量的有用特征集合,以logistic岭回归和基本decision tree模型作为基准模型,并结合递归特征消除(RFE)降维方法,比较检验了GBDT模型对评论质量分类和特征降维上的表现,揭示了各特征项对评论质量分类结果的"贡献度",进而识别关键特征。实验结果表明,基于GBDT模型对评论质量分类效果较好,评论发表时间、评论者排名、关键特征数量、评论字数是影响评论质量的关键特征。 Faced with hundreds of thousands of online reviews, helpful review features facilitate consumers' to identify high quality reviews to support decision making. Based on information adoption model, this paper examines four kinds of useful features sets, totaling seventeen features, on the domains of camera and mobile. With baselines by the logisite ridege regression and decision tree models, the paper investigates the GBDT model in review quality clas sification and features reduction, which reveals the feature contribution as the basis of key features identification. The experiment result shows that timeliness, reviewer ranking, key product features number, and review words number are key features influencing review quality, forming the optimized feature set for the GBDT model .
作者 王洪伟 孟园
出处 《中文信息学报》 CSCD 北大核心 2017年第3期109-117,共9页 Journal of Chinese Information Processing
基金 国家自然科学基金(71371144 71601082)
关键词 GBDT 评论质量 特征贡献度 信息采纳模型 递归特征消除 GBDT review quality feature contribution information adoption model recursive feature elimination
  • 相关文献

参考文献8

二级参考文献238

  • 1殷国鹏,莫云生,陈禹.利用社会网络分析促进隐性知识管理[J].清华大学学报(自然科学版),2006,46(z1):964-969. 被引量:94
  • 2秦兵,刘挺,李生.多文档自动文摘综述[J].中文信息学报,2005,19(6):13-20. 被引量:51
  • 3郭国庆,杨学成,张杨.口碑传播对消费者态度的影响:一个理论模型[J].管理评论,2007,19(3):20-26. 被引量:100
  • 4Anderson E W.Customer satisfaction and word of mouth[J].Journal of Service Research,1998,1(1):5-17.
  • 5Katz E,Paul F.Lazarsfeld,Personal Influence:The Part Played by People in the Flow of Mass Communications[M].New York:Free Press,1955.
  • 6Arndt J.Role of product-related conversations in the diffusion of a new product[J].Journal of Marketing Research,1967,4(3):291-295.
  • 7Chevalier J A,Mayzlin D.The effect of word of mouth on sales:Online book reviews[J].Journal of Marketing Research (JMR),2006,43(3):345-354.
  • 8Harrison-Walker L J.The measurement of word-of-mouth communication and an investigation of service quality and customer commitment as potential antecedents[J].Journal of Service Research,2001,4(1):60.
  • 9Ghose A,Ipeirotis P G.Designing Novel Review Ranking Systems:Predicting the Usefulness and Impact of Reviews[C].Proceedings of the ninth international conference on Electronic commerce,New York,NY,USA:Association Computing Machinery(ACM),2007:303-310.
  • 10Dellarocas C,Zhang X Q,Awad N F.Exploring the value of online product reviews in forecasting sales:The case of motion pictures[J].Journal of Interactive Marketing,2007,21(4):23-45.

共引文献479

同被引文献144

引证文献14

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部