摘要
为了研究莫利秩3的连通群的结构,将其分成两类,分别是好群和坏群。本文在已知有限莫利秩的无限群具有降链条件下,利用降链条件,证明了坏群G是莫利秩3的连通群且Z(G)=1,则x≠1,x∈G,C_G(x)是连通的莫利秩1的群。x,y≠1,x,y∈G,群C_G(x)和群C_G(y)在群G中相互共轭或相等。
We considered two classes of connected groups of Morley rank 3 is conducive to the study of its structure, respectively they are a good group or bad group. We know that any infinite group of finite Morley rank satisfies the descending chain condition, according to the descending chain condition, we show that G be a centerless, bad group of connected groups of Morley rank 3, Then x ≠1,x ∈ G, CG (x) be a connected groups of Morley rank 1 ,and x,y≠l ,x,y∈ G,CG(x)and CG(y) are conjugate to each other or equal.
出处
《长春师范大学学报》
2017年第6期12-14,共3页
Journal of Changchun Normal University
基金
安徽高校自然科学研究重点资助项目"模型论在群论中的应用研究"(KJ2016A646)
关键词
可解群
有限莫利秩群
连通群
无限群
solvable group
group of finite Morley rank
connected group
infinite group