摘要
利用李群方法,得到了五阶非线性发展方程的经典李对称、李代数和相似约化.利用幂级数方法得到了该方程的一系列精确幂级数解.最后由相应的李对称得到了该方程的守恒律.
By applying the Lie group method,we realize the classical Lie symmetry,Lie algebra and similarity reductions of a fifth-order nonlinear integrable equation.Employing power series method,we obtain the exact power series solutions.We also obtain conservation laws of the equation with the corresponding Lie symmetry.
作者
张和伟
刘庆松
ZHANG Hewei LIU Qingsong(Computer Department,Zaozhuang Vocational University,Shandong Zaozhuang 277500,China Editoral Department of JournaI,Liaocheng University,Shandong Liaocheng 252059,China)
出处
《河北师范大学学报(自然科学版)》
CAS
2017年第4期277-283,共7页
Journal of Hebei Normal University:Natural Science
基金
国家自然科学基金(11076015)
关键词
五阶非线性发展方程
李群方法
对称约化
精确解
幂级数方法
守恒律
fifth-order nonlinear integrable equation
Lie group method
symmetry a reduction
exact solutions
power series method
conservation laws