期刊文献+

基于分布阶导数的本构方程模型的理论分析

Theoretical Analysis on the Model of Constitutive Equation Based on Distributed Order Derivatives
下载PDF
导出
摘要 研究基于分布阶导数的固体型黏弹材料的本构方程,方程中涉及到关于应变的分数阶导数的阶的积分.用分数阶导数算子_0D_t~α,Laplace变换及其数值逆方法,讨论了本构方程模型的松弛模量和蠕变柔量,谐变应力下应变的瞬态响应和滞后圈的形成.用分数阶导数算子_-∞D_t~α和待定系数方法,研究了模型在谐变应力下的稳态响应.模型能够合理地表示材料的黏弹特性,参数能够特征黏性或弹性的强弱. The constitutive equation of solid-like viscoelastic materials based on distributed order derivatives was considered, and in the equation the integral on the order of fractional derivatives of strain was involved. By using a fractional derivative operator oD7 , Laplace transform and its numerical inverse method, relaxation modulus, creep compliance, instantenous response of strain under harmonic stress and the formation of hysteresis loop are discussed. By using a fractional derivative operator-∞Dαt and the method of undetermined coefficients, the steady response of the model to harmonic stress is investigated. The model can reasonably show the viscoelastic properties of materials, and the parameteres can characterize the strength of viscosity or elasticity.
作者 段俊生 云文在 DUAN Jun-sheng YUN Wen-zai(School of Sciences, Shanghai Institute of Technology, Shanghai 201418, China School of Mathematical Sciences, Baotou Teachers 'College, Baotou 014030, China)
出处 《内蒙古大学学报(自然科学版)》 CAS 北大核心 2017年第4期425-431,共7页 Journal of Inner Mongolia University:Natural Science Edition
基金 上海市自然科学基金(14ZR1440800) 国家自然科学基金(11201308) 上海市教委重点课程项目(33210M161020)资助
关键词 分数阶微积分 本构方程 分布阶导数 响应 fractional calculus constitutive equation distributed order derivative response
  • 相关文献

二级参考文献13

  • 1谭文长,徐明瑜.PLANE SURFACE SUDDENLY SET IN MOTION IN A VISCOELASTIC FLUID WITH FRACTIONAL MAXWELL MODEL[J].Acta Mechanica Sinica,2002,18(4):342-349. 被引量:19
  • 2Mingyu Xu,Wenchang Tan.Theoretical analysis of the velocity field, stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion[J].Science in China Series A: Mathematics.2001(11)
  • 3C. Friedrich.Relaxation and retardation functions of the Maxwell model with fractional derivatives[J].Rheologica Acta.1991(2)
  • 4Friedrich,C.,Schiessel,H.,Blumen,A.Constitutive behavior modeling and tractional derivatives[].Advances in the Flow and Rheology of Non-Newtonian Fluids.1999
  • 5Heymans,N.Modelling non-linear and time-dependent behaviour of viscoelastic materials using hierarchical models[].Progress and Trends in Rheology V:Proceedings of the Fitth European Rheology Conference.1998
  • 6Nonnenmacher,T.F.Fractional relaxation equations for viscoelasticity and related phenomena[].Rheological Modeling:Thermodynamical and Statistical Approaches.1991
  • 7Mathai,A.M,Saxeha,R.K.The H-function with applications in statistics and other disciplines[]..1978
  • 8Fung,Y.C.Biomechanics:Mechanical properties of living tissues[]..1981
  • 9Glockle W G,Nonnenmacher T F.Fractional Integral Operators and Fox Functions in the Theory of Viscoelasticity[].Macromolecules.1991
  • 10Friedrich C H R.Relaxation and retardation functions of the Maxwell model with fractional derivatives[].Rheologica Acta.1991

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部