摘要
为了克服标准人工蜂群算法中容易陷入局部最优的缺陷、改善寻优过程中随机性过强的缺点,提出一种基于高斯分布的改进人工蜂群算法.通过高斯分布将局部最优和当前全局最优进行比较,从而能较快跳出局部可行区域,并且有较快的收敛速度.最后通过四个常用的数学测试函数进行测试,并将结果和标准ABC、GABC算法进行比较,结果表明改进算法在寻优能力和收敛速度上都有所提高.将改进算法应用于图像边缘检测时,较标准ABC取得了不错的效果.
A new artificial bee colony algorithm based on Gauss distribution is proposed in order to overcome the defects of the standard artificial bee colony algorithm ,which is easy to fall into the local optimum and improve the randomness in the optimiza- tion process. Through the Gauss distribution, the local optimum was compared with the current global optimum, so that the local feasible region could be quickly jumped out, and the convergence speed was faster. Finally, four benchmark functions were test- ed,and compared with the standard ABC algorithm and GABC algorithm, and the results showed that the improved algorithm could improve the searching ability and convergence speed of the algorithm. The improved algorithm was applied to image edge detection, and achieved good results compared with the standard ABC.
出处
《西南民族大学学报(自然科学版)》
CAS
2017年第4期396-401,共6页
Journal of Southwest Minzu University(Natural Science Edition)
基金
广东省特色创新类项目(2016GXJK185)
广东省高等教育学会高职高专云计算与大数据专业委员会课题(GDYJSKT16-06)
关键词
人工蜂群算法
高斯分布
仿真
基准函数
边缘检测
artificial bee colony algorithm( ABC )
optimization
Gauss distribution
simulation
benchmark function
edge detec-tion