期刊文献+

φ-强增生算子方程解的Noor三步迭代收敛率的估计 被引量:7

Convergence Rate Estimate of Noor Three-step Iterative for φ-Strongly Accretive Operator Equations
下载PDF
导出
摘要 使用分析的技巧,在实Banach空间中研究了φ-强增生算子方程解的带误差的Noor三步迭代逼近问题.在一定条件下,建立了φ-强增生算子方程解的带误差的Noor三步迭代的收敛性与稳定性定理,并且提供了更为一般的收敛率的估计. By using analsis techniques, approximation problem of Noor three-step iterative sequence with errors for the equation with a Lipsehitz φ-strongly accretive operators was studied in arbitrary real Banach spaces. Convergence and stability theorems of Noor three-step iterative sequence with errors for equation with a Lipschitz φ-strongly accretive operators were established under the certain conditions, and a general convergence rate estimate was also given in our results.
作者 李丹 丛培根 张树义 LI Dan CONG Peigen ZHANG Shuyi(School of Mathematics and Physics, Bohai University,Jinzhou 121013, China)
出处 《鲁东大学学报(自然科学版)》 2017年第3期193-199,共7页 Journal of Ludong University:Natural Science Edition
基金 国家自然科学基金(11371070)
关键词 Φ-强增生算子 收敛率的估计 Noor三步迭代序列 几乎T-稳定 φ- strongly accretive operators convergence rate estimate Noor three-step iterative sequence almost T-stable
  • 相关文献

参考文献13

二级参考文献80

共引文献80

同被引文献66

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部