摘要
使用分析的技巧,在实Banach空间中研究了φ-强增生算子方程解的带误差的Noor三步迭代逼近问题.在一定条件下,建立了φ-强增生算子方程解的带误差的Noor三步迭代的收敛性与稳定性定理,并且提供了更为一般的收敛率的估计.
By using analsis techniques, approximation problem of Noor three-step iterative sequence with errors for the equation with a Lipsehitz φ-strongly accretive operators was studied in arbitrary real Banach spaces. Convergence and stability theorems of Noor three-step iterative sequence with errors for equation with a Lipschitz φ-strongly accretive operators were established under the certain conditions, and a general convergence rate estimate was also given in our results.
作者
李丹
丛培根
张树义
LI Dan CONG Peigen ZHANG Shuyi(School of Mathematics and Physics, Bohai University,Jinzhou 121013, China)
出处
《鲁东大学学报(自然科学版)》
2017年第3期193-199,共7页
Journal of Ludong University:Natural Science Edition
基金
国家自然科学基金(11371070)
关键词
Φ-强增生算子
收敛率的估计
Noor三步迭代序列
几乎T-稳定
φ- strongly accretive operators
convergence rate estimate
Noor three-step iterative sequence
almost T-stable