期刊文献+

总体最小二乘平差中粗差的可区分性 被引量:3

The distinguishability of gross error in total least square
原文传递
导出
摘要 针对总体最小二乘中粗差的可区分性,在Partial-EIV模型加权总体最小二乘算法的基础上引入了两个备选假设下的可靠性理论,给出了分析总体最小二乘粗差可区分性的方法。通过直线拟合的算例分析,说明本文的方法是可行的,能够有效地分析总体最小二乘中粗差的可区分性,并发现采用总体最小二乘求解直线拟合时,存在粗差不可区分的情况,也就意味着粗差是不可定位的。对于其它计算模型也可能存在粗差不可区分的情况,须加以注意。 In order to analysis distinguishability of gross error in total least square. In the paper the Partial-EIV model weighted total least square is applied. And the theory of reliability under two alternative hypotheses is cited. Thus, The method of analysising distinguishability of gross error in total least square is proposed. At last the example of linear fitting is carried out and illustrate that the method is feasibility. It is effective to analysis distinguishability of gross error in total least square. And the condition of indistin- guishable of gross error is existing when applying total least square to solve linear fitting. It's meaning that the gross error can not be located. It is need to be careful that the condition maybe exist in other calculation mode.
出处 《测绘科学》 CSCD 北大核心 2017年第7期46-51,共6页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41204003 41374007 41464001) 江西省科技落地计划项目(KJLD12077) 江西省教育厅科技项目(GJJ13457) 中国博士后基金项目(94773) 江西省中青年教师发展计划访问学者专项项目(2012-132) 江西省远航工程计划项目(2013-132)
关键词 总体最小二乘 相关系数 可区分性 粗差 total least square correlation coefficient distinguishability gross error
  • 相关文献

参考文献4

二级参考文献48

  • 1袁庆,楼立志,陈玮娴.加权总体最小二乘在三维基准转换中的应用[J].测绘学报,2011,40(S1):115-119. 被引量:46
  • 2杨元喜.等价权原理──参数平差模型的抗差最小二乘解[J].测绘通报,1994(6):33-35. 被引量:58
  • 3PETER J H. Robust Statistics[M]. Hoboken: John Wiley Sons, 1981.
  • 4GOLUB H G, VAN LOAN F C. An Analysis of the Total Least Squares Problem [J]. SIAM Journal on Numerical Analysis, 1980, 17(6): 883-893.
  • 5SCHAFFRIN B. A Note on Constrained Total Least- Squares Estimation [J]. Linear Algebra and Its Applica- tions, 2006(417): 245-258.
  • 6SCHAFFRIN B, FELUS Y A. An Algorithmic Approach to the Total Least-Squares Problem with Linear and Quad- ratic Constraints [J]. Studia Geophysica et Geodaetiea, 2009, 53(1):1-16.
  • 7SCHAFFRIN B, WIESER A. On Weighted Total Least- Squares Adjustment for Linear Regression [J]. Journal of Geodesy, 2008, 82(7):415 421.
  • 8FELUS Y A, SCHAFFRIN B. Performing Similarity Transformations Using the Error-in-Variables Mode[ C] //Proceedings of ASPRS 2005 Annual Conference, Balti- more:[s, n. ] ,2005 :7-11.
  • 9KANG Xiaofeng, ZHANG Huaping A Method of Selecting Weight Iteration Based on LS-TLS[J]. Applied Mechan- ics and Materials, 201!,, 90-93 2832-2835.
  • 10WU W Y, KANG C L. The Theory of Selecting Weight Iteration Based on LS-TLS Applied in Road Line Type Identification [C] // Proceedings of 2011 IEEE International Conference on Computer Science and Automation Engineer- ing. Shanghai: IEEE, 2011:353-356.

共引文献116

同被引文献30

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部