期刊文献+

Preparation of Macroscopic Entangled Coherent States in Nitrogen-Vacancy Centers Ensembles Coupled to a Superconducting Flux Qubit

Preparation of Macroscopic Entangled Coherent States in Nitrogen-Vacancy Centers Ensembles Coupled to a Superconducting Flux Qubit
原文传递
导出
摘要 We propose a potentially practical scheme for creating macroscopic entangled coherent state between two separate nitrogen-vacancy center spin ensembles placed near a superconducting flux qubit. Through the collective magnetic coupling and the in situ tunability of the flux qubit, the arbitrary entangled coherent states of spin ensembles can be achieved with high success possibilities under the influence from decoherence of the flux qubit and spin ensembles.The experimental feasibility and challenge are justified using currently available technology. We propose a potentially practical scheme for creating macroscopic entangled coherent state between two separate nitrogen-vacancy center spin ensembles placed near a superconducting flux qubit. Through the collective magnetic coupling and the in situ tunability of the flux qubit, the arbitrary entangled coherent states of spin ensembles can be achieved with high success possibilities under the influence from decoherence of the flux qubit and spin ensembles. The experimental feasibility and challenge are justified using currently available technology.
出处 《Communications in Theoretical Physics》 SCIE CAS CSCD 2017年第6期674-680,共7页 理论物理通讯(英文版)
基金 Supported by the National Science Foundation of China under Grant No.11374118
关键词 nitrogen-vacancy center hybrid quantum system macroscopic quantum entanglement nitrogen-vacancy center, hybrid quantum system, macroscopic quantum entanglement
  • 相关文献

参考文献1

二级参考文献34

  • 1A. Monmayrant and B. Chatel, Rev. Sci. Instr. 75, 2668 (2004).
  • 2M. Viteau, A. Chotia, M. Allegrini, N. Bouloufa, O. Dulieu, D. Comparat, and P. Pillet, Phys. Rev. A 79, 021402 (2009).
  • 3M. Raab, G. HSning, W. Demtr ooder, and C. R. Vidal, J. Chem. Phys. 76, 4370 (1982).
  • 4M. M. Wefers and K. A. Nelson, J. Opt. Soc. Am. B 12, 1343 (1995).
  • 5G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, Appl. Phys. B 72,627 (2001).
  • 6W. Weickenmeier, U. Diemer, M. Wahl, M. Raab, W. Demtroder, and W. Mfiller, J. Chem. Phys. 82, 5354 (1985).
  • 7U. Diemer, R. Duchowicz, M. Ertel, E. Mehdizadeh, and W. DemtrSder, Chem. Phys. Lett. 164, 419 (1989).
  • 8A. Chotia, M. Viteau, T. Vogt, D. Comparat, and P. Pillet, New J. Phys. 10, 045031 (2008).
  • 9O. E. Martinez, IEEE J. Quantum Electron. QE-23, 59 (1987).
  • 10J. T. Bahns, W. C. Stwalley, and P. L. Gould, J. Chem. Phys. 104, 9689 (1996).

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部