期刊文献+

基于BP神经网络的公用建筑电力能耗预测研究 被引量:6

Research on Power Consumption Prediction of Public Buildings Based on BP Neural Network
原文传递
导出
摘要 以某大型房地产公司所建建筑为研究对象,通过相关性分析,确定影响公用建筑电力能耗的关键因素。基于关键影响因素,采用BP神经网络算法,建立建筑能耗密度预测模型,对比观测值和预测值之间的残差,结果表明预测模型具有较好的准确性。 Taking the buildings that constructed by a large real estate company as the research object,the paper determines the key factors affecting the power consumption of public buildings through the correlation analysis. Based on the factors,uses the BP neural network algorithm to establish the prediction model of building energy consumption density,compares the residual between the observed value and the predicted value,the results show that the predition model has good accuracy.
作者 杜冠洲 韦古强 高正平 DU Guanzhou WEI Guqiang GAO Zhengping(Ducheng Weiye Group Co., Ltd, Beijing 100020, China State Grid Jiangsu Economic Research Institute, Nanjing 210008, China)
出处 《工程经济》 2017年第6期76-80,共5页 ENGINEERING ECONOMY
基金 国家电网公司科技项目"多业务生产数据智能监测与分析一体化平台研究及示范应用"
关键词 建筑节能 神经网络 能耗密度 影响因素 building energy saving neural network consumption density affecting factor
  • 相关文献

参考文献7

二级参考文献47

  • 1程武山.基于遗传神经网络的烧结终点预测系统[J].烧结球团,2004,29(5):18-22. 被引量:10
  • 2王钰,郭其一,李维刚.基于改进BP神经网络的预测模型及其应用[J].计算机测量与控制,2005,13(1):39-42. 被引量:87
  • 3神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005,7:221-223.
  • 4李敏强,寇纪淞,林丹,等.遗传算法的基本原理及应用[M].北京:科学出版社,2004.2.
  • 5邓聚龙.灰色理论基础[M].武汉:华中科技大学出版社,2002..
  • 6A,AzadehS.F.Ghaderi,S.Tarverdian,M. Saberi. Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption [J].Applied Mathematics and Computation, 2007, (186):1731-1741.
  • 7Tugce Kazanasmaz, Murat Gunaydin, Selcen Binol. Artificial neuralnet works to predict daylight illuminane in office buildings [J]. Building and Environme nt,2009,44(8):1751-1757.
  • 8飞思科技产品研发中心.辅助神经网络析.
  • 9HyghJ S, DecarolisJ F, Hill DB, et al. Multivariate regression as an energy assessment tool in early building design[J]. Building and Environment, 2012 , 57 ;165-175.
  • 10Ferreira PM, Ruano A E, Silva S, et al. Neural networks based predictive control for thermal comfort and energy savings in public buildings[J] . Energy and Buildings, 2012,55 :238-251.

共引文献50

同被引文献58

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部