摘要
以某大型房地产公司所建建筑为研究对象,通过相关性分析,确定影响公用建筑电力能耗的关键因素。基于关键影响因素,采用BP神经网络算法,建立建筑能耗密度预测模型,对比观测值和预测值之间的残差,结果表明预测模型具有较好的准确性。
Taking the buildings that constructed by a large real estate company as the research object,the paper determines the key factors affecting the power consumption of public buildings through the correlation analysis. Based on the factors,uses the BP neural network algorithm to establish the prediction model of building energy consumption density,compares the residual between the observed value and the predicted value,the results show that the predition model has good accuracy.
作者
杜冠洲
韦古强
高正平
DU Guanzhou WEI Guqiang GAO Zhengping(Ducheng Weiye Group Co., Ltd, Beijing 100020, China State Grid Jiangsu Economic Research Institute, Nanjing 210008, China)
出处
《工程经济》
2017年第6期76-80,共5页
ENGINEERING ECONOMY
基金
国家电网公司科技项目"多业务生产数据智能监测与分析一体化平台研究及示范应用"
关键词
建筑节能
神经网络
能耗密度
影响因素
building energy saving
neural network
consumption density
affecting factor