期刊文献+

基于多尺度角点的改进SIFT算法 被引量:2

AN IMPROVED SIFT ALGORITHM BASED ON MULTI-SCALE CORNER POINT
下载PDF
导出
摘要 重点讨论一种基于角点的改进SIFT(Scale Invariant Feature Transform,即尺度不变特征变换)算法。该算法采用统一的低主曲率比值删除不稳定边缘响应点,把高斯空间中提取的角点加入到运用主曲率比值筛选后的SIFT特征点中。另外,在角点检测中,以图像区域方差来动态确定角点检测的阈值,大大提高了算法的适应性。实验证明,改进后的算法能提取更加稠密且高匹配的特征点,并且具有对主曲率比值不敏感的优点。 This paper focuses on a kind of improved SIFT algorithm based on the corner point. The algorithm deletes the unstable edge response points by using the unified low main curvature ratio, and combine the SIFT features points which have been screened according to main curvature ratio with the corner points of the image space of Gaussian. In addition, on the aspect of the corner detection, the variance of image region dynamically determines the threshold of the corner detection, so that greatly improving the adaptability of the algorithm. Experiments show that the improved algorithm can extract more dense and high matching feature points, and has the advantage of being inserisitive to the main curvature ratio.
出处 《计算机应用与软件》 2017年第7期166-170,共5页 Computer Applications and Software
关键词 特征提取 SIFT 算法 角点检测 改进优化 Feature extraction SIFT algorithm Comer detection Improvement optimization
  • 相关文献

参考文献7

二级参考文献104

  • 1孙宁,冀贞海,邹采荣,赵力.基于局部二元模式算子的人脸性别分类方法[J].华中科技大学学报(自然科学版),2007,35(S1):177-181. 被引量:20
  • 2查宇飞,毕笃彦.基于小波变换的自适应多阈值图像去噪[J].中国图象图形学报(A辑),2005,10(5):567-570. 被引量:50
  • 3Li J, Allinson N M. A comprehensive review of current local features for computer vision [J]. Neurocomputing, 2008, 71 (10/12) : 1771-1787.
  • 4Mikolajczyk K, Tuytelaars T, Schmid C, etal. A comparison of affine region detectors [J]. International Journal of Computer Vision, 2005, 65(1/2): 43-72.
  • 5Mikolajczyk K, Sehmid C. A performance evaluation of local descriptors [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(10): 1615-1630.
  • 6Lowe D G. Distinctive image features from seale-invariant keypoints [J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 7Ke Y, Sukthankar representation for local R. PCA-SIFT: a more distinctive image descriptors [C]//Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington D C, 2004, 2:506-513.
  • 8Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 971-987.
  • 9Herkkila M, Pietikainen M, Schmid C. Description of interest regions with local binary patterns [J]. Pattern Recognition, 2009, 42(3): 425-436.
  • 10Schaffalitzky F,Zisserman A.Multi-view matching for unordered image sets,or "how do I organize my holiday snaps?"// Proceedings of the 7th European Conference on Computer Vision.Copenhagen,2002:414-431.

共引文献287

同被引文献17

引证文献2

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部