期刊文献+

基于时间序列模型商品搜索排序

SORTING OF COMMODITY SEARCH BASED ON TIME SERIES MODEL
下载PDF
导出
摘要 电商商品搜索引擎目前大多都是基于用户浏览行为与购买行为来建立搜索因子,通过这些因子计算出商品分地区的排序分值进行排序。然而这些行为数据都是属于历史数据。搜索的结果都是基于历史数据的分值计算没有前瞻性。特别对于换季商品使用该方式计算出来的搜索结果不佳,转化率不高。提出一种基于时间序列的分析方法,对部分的搜索因子采用预测数据来计算分值,以满足商品搜索中某些具有周期性季节性商品的合适排序。 Commercial search engine which establishes search factors are mostly based on the current user browsing behavior and buying behavior, and through these factors to calculate the goods sorted by region sorting scores. However, these behavioral data belong to historical data. The search results based on the historical data of the score calculation is not forward-looking. Especially for the seasonal goods, the method of calculation of the search results are poor, the conversion rate is not high. In this paper, a method based on analysis of time series is proposed to calculate the scores of partial search factors by using prediction data, which can satisfy with the proper ordering of some periodic seasonal goods in the commodity search.
作者 章振增
机构地区 上海大学
出处 《计算机应用与软件》 2017年第7期282-285,333,共5页 Computer Applications and Software
关键词 商品搜索排序 时间序列分析 Commodity search ranking Time series analysis
  • 相关文献

参考文献1

二级参考文献17

  • 1Rafiei D, Mendelzon A. Efficient retrieval of similar time se- quences using DFT [C]//Proceedings of 5th International Con- ference on Foundations of Data Organizations and Algorithms. Kobe,Japan, 1998:249-257.
  • 2Berndt D J, Clifford J. Using dynamic time warping to find pat- terns in time series [C]//Proceedings of the AAAI Workshopon Knowledge Discovery in Databases. Menlo Park, CA: AAAI, 1994:359-370.
  • 3Das G, Gunopulos D, Mannila H. Finding Similar Time Series [C]//Proceedings of the Conference on Principles of Knowledge Discovery and Data Mining. Springer-Verlag, London, UK, 1997:88-100.
  • 4Loh W K, Kim S W, Whang K Y. Index interpolation: an ap- proach for subsequence matching supporting normalization transform in time-teries databases [C]//Proceedings of the 9th Intemation Conference on Information and Knowledge Manage- ment. New York: ACM Press, 2000: 314-325.
  • 5Vlachos M, Hadjieleftheriou M, Gunopulos D, etal. Indexing Multi-Dimensional Time-Series with Support for Multiple Dis- tance Measures[C]//Proceedings of 9th ACM SIGKDD Inter- national Conference on Knowledge Discovery and Data Mining. ACM, New York, NY, USA, 2003 : 216-225.
  • 6Chen L,Ng R. On the marriage of Lp-norm and edit distance[C]// Proceedings of the 30th International Conference on Very Large Data Bases. Toronto, Canada: VLDB Endowment, 2004 : 792-801.
  • 7Keogh E. Exact indexing of dynmic time warping [C]//Procee- dings of 28th International Conference on Very Large Databases Conference. Hong Kong: VLDB Endowment, 2002 : 406-417.
  • 8Kim S, Park S, Chu W. An index-based approach for similarity search supporting time warping in large sequence databases[C]// Proceedings of the 17th International Conference on Data Engi- neering. Heidelberg: IEEE Computer Society, 2001 : 607-614.
  • 9Lemire D. Faster Retrieval with a Two-Pass Dynamic-Time- Warping Lower Bound[J]. Pattern Recognition, 2009, 42 (9): 2169-2180.
  • 10Niennattrakul V, Ruengronghirunya P, Ratanamahatana C A. Exact Indexing for Massive Time Series Databases under Time Warping Distance[J]. Data Mining and Knowledge Discovery, 2009,21(3) : 509-541.

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部