期刊文献+

影响频繁倒极电渗析技术极限电流密度的因素 被引量:1

Factors affecting limiting current density about frequent reverse electrodialysis technology
下载PDF
导出
摘要 采用频繁倒极电渗析技术,考察了膜性能、进水浓度、进水流量对极限电流密度的影响,并考察了电流密度对水的电导率、电渗析膜离子脱除率及装置耗电量的影响。结果表明:当选用AMX与ACS两段阴离子交换膜运行、原水电导率为1 784μS/cm、进水流量为0.69 m^3/h时,极限电流密度值最大,为43.62 A/m^2;当操作电流小于极限电流时,随着电流密度的增大,浓缩水电导率不断增大,产品水电导率不断减小,水中离子的脱除率不断增大;在相同的条件下,当进水流量大时,装置耗电量较低;当进水电导率大时,装置耗电量较低。 The effect of membrane ent con density centration, influent flow on was sal technolo property, influlimiting current investigated by the electrodialysis revergy and the impact of electric current density on conductivity of water, electrodialysis membrane ion removal rate and power consumption of the device was investigated. The results showed that when AMX and ACS two anion exchange membranes were used in operation ductivity was 1 784 μS/cm, 0.69 m3/h, the limiting current maximum value 43. 62 A/m2 ; and feed water coninfluent flow was density reached the when the operating current was less than limiting current, with the increasing of electric current density, conductivity of concentrated water rose continuously, conductivity of product water decreased constantly and removal rate of ion rate in water increased gradually; under the same conditions,when the influent flow was larger, the power consumption of unit was lower; when the conductivity of influent was bigger, the power consumption of unit was lower.
作者 张铁锤
出处 《石化技术与应用》 CAS 2017年第4期317-321,共5页 Petrochemical Technology & Application
关键词 频繁倒极 电渗析 极限电流密度 离子交换 膜性能 frequent reversal electrodialysis limiting current density ion exchange membrane property
  • 相关文献

参考文献9

二级参考文献47

  • 1陈玉莲,周广浚,万世义,赵银.电渗析处理糠醛废水过程中极限电流的探讨[J].太原工业大学学报,1989,20(3):90-93. 被引量:2
  • 2宋德政.电渗析脱盐时威尔逊公式修正的新方法[J].东海海洋,1996,14(1):58-64. 被引量:2
  • 3王振kun.离子交换膜制备,性能及应用[M].北京:化学工业出版社,1986.278-289.
  • 4陈玉莲.膜分离技术在糠醛废水处理中的应用[J].石油化工,1978,16(9):645-649.
  • 5王振 张怀明 等.电渗析与反渗透[M].上海:上海科学技术出版社,1980.110-115.
  • 6查全性.电极过程动力学[M].北京:科学出版社,2002..
  • 7Amphlett JC,Baumert RM,Man RF,et al.Performance modeling of the ballard Mark Ⅳ solid polymer electrolyte fuel cell ( Ⅰ ) mechanistic model development [J].J Electrochemical Soc, 1995,142(1):1-8.
  • 8Dannenberg K, Ekdunge P, Lindbergh G. Mathematical model of the PEMFC[J].J Appl Electrochemi,200,30(12):1377-1387.
  • 9Springer T E, Zawodzinski T A, Gottesfeld S. Polymer electrolyte fuel cell model [J].J Electrochem Soc,1991,138(8): 2334-2342.
  • 10Nedjib D, Lu D. Influence of heat transfer on gas and water transfer in fuel cells[J].Int J The Chem Sei,2002,41:29-40.

共引文献15

同被引文献15

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部