期刊文献+

基于Brewer抽样的不放回样本追加策略下域的估计 被引量:3

Domain Estimation Based on Brewer Sampling without Replacement Complementing Strategies
原文传递
导出
摘要 本文研究了基于Brewer抽样的不放回追加策略,给出单元的前两阶包含概率的具体计算公式,并构造联合设计下的Horvitz-Thompson估计,同时给出了模拟结果。根据模拟结果可以看出,在联合设计下域总量估计的精度比基本设计和追加设计下估计量的精度高。 This paper develops complementing strategies of sampling without replacement based on the Brewer sampling. The specific calculation formula of the first (second)-order inclusion probability ot the unit and the Horvitz - Thompson estimator under the joint-design are given. Simulation results are conducted at the same time. The simulation results show that the estimator under the joint-design is more precise than the estimator under the basic design and the complement design.
作者 李莉莉
出处 《数理统计与管理》 CSSCI 北大核心 2017年第4期651-660,共10页 Journal of Applied Statistics and Management
基金 中国科技部"十二五"支撑计划项目(2014BAK01B04-2)
关键词 Brewer抽样 样本追加策略 域估计 Brewer sampling, complementing strategies of sampling, domain estimation
  • 相关文献

参考文献6

二级参考文献81

  • 1王长耀,林文鹏.基于MODISEVI的冬小麦产量遥感预测研究[J].农业工程学报,2005,21(10):90-94. 被引量:66
  • 2张勇,周巍,涂玉娟.MPPS抽样设计方差估计的比较研究[J].统计研究,2006,23(4):64-68. 被引量:7
  • 3丁晨芳.组合模型分析方法在我国粮食产量预测中的应用[J].农业现代化研究,2007,28(1):101-103. 被引量:48
  • 4Rao J N K. Small Area Estimation[M]. New York: Wiley,2003.
  • 5Wu Changbao, Sitter Randy R. A model-calibration approach to using complete auxiliary inforamation from survey data[J]. Journal of the American Statistical Association, 2001, 96(453) :185 - 193.
  • 6Chandra H, Chambers R L. Comparing EBLUP and CEBLUP for small area estimation[ J ]. Statistics in Transition, 2005( 7): 637- 648.
  • 7Shao J, Tu D. The jackknife and bootstrape[M]. New York:Springer-verlag, 1992.
  • 8Rust K F,Rao J N K. Variance estimation for complex surveys using replication techniques[J]. Statistical Methods in Medical Research, 1996(5) :283 - 310.
  • 9Ghosh M. Rao J N K. Small area estimation: an appraisal (with discussion) [J]. Statistical Science, 1994(9) :65 - 93.
  • 10Marker D A. Organization of small area estimators using a generalized linear regression framework [J].Journal of Official Statistics, 1999(15) : 1 - 24.

共引文献63

同被引文献22

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部