期刊文献+

机织物密度对字典学习纹理表征的影响 被引量:2

Influence of woven fabric density on texture representation based on dictionary learning
下载PDF
导出
摘要 为探讨纺织品表观质量的客观、智能评定方法,使用不同密度的机织物图像,采用子窗口样本获取方式作为学习样本,以离散余弦字典作为初始学习字典,选择基于最小二乘的字典学习算法求解用于表征织物纹理图像的字典,再通过字典元素的线性组合对织物图像进行重构。以均方误差为指标,首先讨论织物图像灰度值分布对字典学习算法重构误差的影响,然后对图像灰度值进行标准化处理,在此基础上探讨织物经纬密度对重构图像误差的影响。实验结果发现,当字典个数等于9时,织物密度在150~360根/10 cm之间,随着织物密度的增加,平纹重构图像的均方误差先变大,以后不再增加,而斜纹重构图像的均方误差增大。 In order to discuss an smart evaluation method for objective evaluation on fabric appearance quality,patches extracted from woven fabric images with different densities were used as training samples and discrete cosine dictionary was used as the initial dictionary of learning algorithm based on the least square method. The original woven fabric image samples can be reconstructed well by the dictionary by a linear summation of its elements. To evaluate the reconstruction performance,mean square error was selected as evaluation index. The influence of gray distribution of fabric images on the reconstruction error was discussed,and then the influences of density on the reconstruction error were discussed with the normalized image gray value. The experimental results show that when the number of dictionary atoms equals to 9,the mean square error of plain increases firstly and then remains within a certain range and the mean square error of twill increases with the increasing of warp and weft density from 150 to360 yarns/10 cm.
出处 《纺织学报》 EI CAS CSCD 北大核心 2017年第7期142-147,共6页 Journal of Textile Research
基金 国家自然科学基金项目(61379011 61501209 61271006)
关键词 字典学习 机织物 纹理表征 密度 dictionary learning woven fabric texture representation density
  • 相关文献

参考文献4

二级参考文献82

  • 1王燕霞,张弓.一种改进的用于稀疏表示的正交匹配追踪算法[J].信息与电子工程,2012,10(5):579-583. 被引量:11
  • 2高晓丁,汪成龙,左贺,梁继超.基于直方图统计的织物疵点识别算法[J].纺织学报,2005,26(2):121-123. 被引量:26
  • 3韩疆,全春来,李莲治,王岩.DCT域中特定几何变换的性质及其应用[J].系统工程与电子技术,1995,17(10):34-40. 被引量:1
  • 4李伟红,龚卫国,陈伟民,梁毅雄,尹克重.基于小波分析与KPCA的人脸识别方法[J].计算机应用,2005,25(10):2339-2341. 被引量:6
  • 5Shen Bo, Sethi I K, Bhaskaran V. DCT domain alpha blending [A]. In: Proc. of IEEE International Conference on Image Processing (ICIP98) [C]. Chicago, Illinois, USA, 1998,1 : 857-861.
  • 6Shen Bo, Sethi I K. Direct feature extraction from compressed images[A]. In..Proc. SPIE Storage and Retrieval for Image andVideo Database IV [C], San Jose, California, USA, 1996,2670 :404-414.
  • 7Chitprasert B, Rao K R. Discrete cosine transform filtering[J].Signal Processing, 1990,19(3) :233-245.
  • 8Chen W H, Fralick S C. Image enhancement using cosine transform filtering [A]. In: Image Sci. Math. Symp. [C].Monterey,CA, USA, November, 1976 :186-192.
  • 9Neri A, Russo G, Talong P. Inter-block filtering and downsampling in DCT domain [J]. Signal Processing: Image Communication, 1994,6(4) :303-317.
  • 10Smith B C, Rowe L A. Algorithms for manipulating compressedimages [J]. IEEE Computer Graphics and Applications, 1993,13(5) :34-42.

共引文献45

同被引文献17

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部