期刊文献+

一维不连续分段光滑映射的加周期分岔

Period-adding bifurcations in one-dimensional discontinuous piecewise smooth maps
下载PDF
导出
摘要 本文讨论了一类一维不连续非线性分段光滑映射的动力学行为,得到了其不动点存在和稳定时参数应满足的条件,讨论了其形如Am-1 B的稳定m-周期轨(m≥2)的存在性,得到了此类周期轨存在及稳定时的参数条件,并进一步讨论了这些周期轨的倍周期分岔和鞍结点分岔现象. In this paper, we consider the dynamics of a class of one-dimensional discontinuous nonlinear maps. We obtain the existence and stability conditions of fixed points in the parameter space. Then we study the existence and stability of period-m orbit of type Am-1B. Analytical conditions for the existence and stability of the periodic orbits are found. The period doubling and saddle-node bifurcations of the or- bits are also considered.
作者 张鑫
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2017年第4期698-702,共5页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(11371264)
关键词 分段光滑映射 周期轨 分岔 Piecewise smooth system Periodic orbit~ Bifurcation
  • 相关文献

参考文献1

二级参考文献12

  • 1Battelli F, Feckan M. Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous sys- tems[J]. Physica D, 2012, 241 : 1962.
  • 2Bernardo M D, Budd C J, Champneys A R, et al. Piecewise-smooth dynamical systems: theory and applications[M]. London: Springer-Verlag: 2008.
  • 3Du Z, Li Y, Shen J, Zhang W. Impact oscillators with homoclinic orbittangent to the wall[J]. Physica D, 2013, 245: 19.
  • 4Du Z, Zhang W. Melnikov method for homoclinic bi- furcation in nonlinear impact oscillators[J]. Comput Math Appl, 2005, 50: 445.
  • 5Feckan M. Bifurcation and chaos in discontinuous and continuous systems[M]. Beijing: Higher Edu- cation Press, 2011.
  • 6Guekenheimer J, Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields [M]. New York: Springer-Verlag, 1983.
  • 7Hale J. Ordinary differential equations[M]. Hun- tington: Rober E Krieger Publishing Company, 1980.
  • 8Ide K, Wiggins S. The bifurcation to homoclinic tori in the quasiperiodically forced Duffing oscillator[J]. Physica D,1989, 34, 169.
  • 9Melnikov V K. On the stability of the center for time periodic perturbations [J]. Trans Moscow Math Soc, 1963, 12: 1.
  • 10Wiggins S. Global bifurcations and chaos-analytical methods[M]. New York: Springer-Verlag, 1988.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部